Research Article
BibTex RIS Cite

Physiological and Anatomical Changes Induced in Wheat (Triticum aestivum cv. Hendrix) by Lead Stress

Year 2025, Volume: 35 Issue: 3, 498 - 516, 30.09.2025
https://doi.org/10.29133/yyutbd.1639190

Abstract

LED (Pb), a by-product of industrial activity and urban wastewater, poses a significant threat to crops, ecosystems and human health. This study examined the effects of Pb stress on the physiology and anatomy of Triticum aestivum cv. Hendrix, a wheat cultivar. Wheat plants were exposed to Pb concentrations of 0, 5, 10, and 15 mM for three weeks. Exposure to lead stress significantly decreases the levels of various photosynthetic pigments, including total chlorophyll, total carotenoids, chlorophyll a, and chlorophyll b. The content of malondialdehyde (MDA) content, a marker of lipid peroxidation, increased significantly with increasing Pb concentrations. Anatomical changes in Pb-stressed plants included decreased root cortex and endodermis thickness, increased intercellular spaces in cortical tissues, increased collenchyma thickness in stems, decreased vascular element number and trachea diameter in stems, and reduced bulliform cell size and sclerenchyma, xylem, and phloem thickness in leaves. These changes suggest that Pb stress may disrupt vascular development in root, interfere with water and nutrient transport in the stems, and reduce photosynthetic capacity in the leaves. The accumulation of Pb in the vascular bundles suggests that these tissues may be particularly sensitive to Pb stress. Overall, the results show that Pb stress causes a variety of anatomical changes in T. aestivum cv. Hendrix, which may represent adaptive responses to Pb stress.

References

  • Ahmad, S. H., Reshi, Z., Ahmad, J., & Iqbal, M. (2005). Morpho-anatomical responses of Trigonella foenum graecum Linn. to induced cadmium and lead stress. Journal of Plant Biology, 48(1), 64–84. doi: 10.1007/BF03030566
  • Akcin, A, & Akcin, T. A. (2019). Protective effects of humic acid against chromium stress in wheat (Triticum aestivum L. cv. Delabrad-2). J. Int. Environmental Application & Science, 14(2), 50–58.
  • Akcin, Adnan. (2021). The effects of fulvic acid on physiological and anatomical characteristics of bread wheat (Triticum aestivum L.) cv. Flamura 85 exposed to chromium stress. Soil and Sediment Contamination, 30(5), 590–609. doi: 10.1080/15320383.2021.1873914
  • Akinci, I. E., Akinci, S., & Yilmaz, K. (2010). Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. African Journal of Agricultural Research, 5(6), 416–423. doi: 10.5897/AJAR10.016
  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869-881. doi: 10.1016/j.chemosphere.2013.01.075
  • Alkhatib, R., Bsoul, E., Blom, D., Ghoshroy, K., Creamer, R., & Ghoshroy, S. (2013). Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. Turkish) roots and leaves. Journal of Microscopy and Ultrastructure, 1, 57–62. doi: 10.1016/j.jmau.2013.06.005
  • Al-Saadi, S. A. A. M., Al-Asaadi, W. M., & Al-Waheeb, A. N. H. (2013). The effect of some heavy metals accumulation on physiological and anatomical characteristic of some Potamogeton L. plant. Journal of Ecology and Environmental Sciences, 4(1), 100–108. Retrieved from http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000261
  • Amin, H., Arain, B. A., Jahangir, T. M., Abbasi, M. S., & Amin, F. (2018). Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): profitable phytoremediation with biofuel crops. Geology, Ecology, and Landscapes, 2(1), 51–60. doi: 10.1080/24749508.2018.1452464
  • Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68(2), 139–148. doi: 10.1016/j.envexpbot.2009.08.009
  • Arif, N., Sharma, N. C., Yadav, V., Ramawat, N., Dubey, N. K., Tripathi, D. K., Chauhan, D. K., & Sahi, S. (2019). Understanding Heavy Metal Stress in a Rice Crop: Toxicity, Tolerance Mechanisms, and Amelioration Strategies. Journal of Plant Biology, 62(4), 239–253. doi: 10.1007/s12374-019-0112-4
  • Armendariz, A. L., Talano, M. A., Travaglia, C., Reinoso, H., Wevar Oller, A. L., & Agostini, E. (2016). Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiology and Biochemistry, 98, 119–127. doi: 10.1016/j.plaphy.2015.11.021
  • Ashraf, A., Bhardwaj, S., Ishtiaq, H. K., Devi, Y., & Kapoor, D. (2021). Lead uptake, toxicity and mitigation strategies in plants. Plant Archives, 21(1), 712–721. doi: 10.51470/plantarchives.2021.v21.no1.099
  • Aslam, M., Aslam, A., Sheraz, M., Ali, B., Ulhassan, Z., Najeeb, U., Zhou, W., & Gill, R. A. (2021). Lead Toxicity in Cereals: Mechanistic Insight Into Toxicity, Mode of Action, and Management. Frontiers in Plant Science, 11. doi: 10.3389/fpls.2020.587785
  • Aslam, M., Saeed, M. S., Sattar, S., Sajad, S., Sajad. M., Adnan. M., Iqbal, M., & Sharif, M. T. (2017). Specific role of proline against heavy metals toxicity in plants. International Journal of Pure & Applied Bioscience, 5(6), 27–34. doi: 10.18782/2320-7051.6032
  • Baranowska-Morek, A., & Wierzbicka, M. (2004). Localization of lead in root tip of Dianthus. Acta Biologica Cracoviensia Series Botanica, 46, 45–56.
  • Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13(1), 1-37. doi: 10.1080/01904169009364057
  • Barzin, G., & Firozabadi, Z. J. (2023). The Effect of Silicon on Growth, Physiological, and Phytochemical Attributes of Calendula Seedlings Under Lead Stress. Water, Air, and Soil Pollution, 234(5). doi: 10.1007/s11270-023-06336-2
  • Batista, F. M., Moscheta, I. S., Bonato, C. M., Batista, M. A., José Garcia de Almeida, O., & Takeyoshi Inoue, T. (2013). Aluminum in corn plants: influence on growth and morpho-anatomy of root and leaf. R. Bras. Ci. Solo, 37, 177–187.
  • Bhatt, P., Gangola, S., Bhandari, G., Zhang, W., Maithani, D., Mishra, S., & Chen, S. (2021). New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere, 268, 1-21. doi: 10.1016/j.chemosphere.2020.128827
  • Bhatti, K. H., Anwar, S., Nawaz, K., Hussain, K., Siddiqi, E. H., Sharif, R. U., Talat, A., & Khalid, A. (2013). Effect of heavy metal lead (PB) stress of different concentration on wheat (Triticum aestivum L.). Middle East Journal of Scientific Research, 14(2), 148–154. doi: 10.5829/idosi.mejsr.2013.14.2.19560
  • Cabral De Melo, H., Mauro De Castro, E., Soares, Â. M., Amaral De Melo, L., & Alves, J. D. (2007). Anatomical and physiological alterations in Setaria anceps Stapf ex Massey and Paspalum paniculatum L. under water deficit conditions. Hoehnea, 34(2), 145–153.
  • Chaudhari, J., Patel, K., & Patel, V. (2016). Exploring the toxic effects of Pb & Ni on stem anatomy of Pisum sativum L. International Journal of Chemical, Environmental & Biological Sciences, 4(1), 28–32.
  • Chowdhury, N., & Rasid, M. M. (2021). Evaluation of brick kiln operation impact on soil microbial biomass and enzyme activity. Soil Science Annual, 72(1), 1-16. doi: 10.37501/soilsa/132232
  • Chukwu, E. C., & Gulser, C. (2025). Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Security, 18(100178), 1–11. doi: 10.1016/j.soisec.2025.100178
  • Çolak, U., & Doğan, M. (2011). Some physiological effects of lead application in Triticum aestivum L. cv. Ceyhan, 99. Research Journal of BiologyScience, 4(2), 49–53. Retrieved from www.nobel.gen.tr
  • Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G. I., Senatov, F., Koppala, S., & Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters, 3(100064). doi: 10.1016/j.hazl.2022.100064
  • Cooper, R. (2015). Re-discovering ancient wheat varieties as functional foods. Journal of Traditional and Complementary Medicine, 5(3), 138–143. doi: 10.1016/j.jtcme.2015.02.004
  • Dey, U., & Mondal, N. K. (2016). Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environmental Science, 2(1), 1-12. doi: 10.1080/23311843.2016.1196472
  • Dubcovsky, J., & Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316(5833), 1862–1866. Retrieved from www.sciencemag.org
  • Farnese, F. S., Oliveira, J. A., Lima, F. S., Leão, G. A., Gusman, G. S., & Silva, L. C. (2014). Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Brazilian Journal of Biology, 74(3), 103–112. doi: 10.1590/1519-6984.01113
  • Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16(3), 1807–1828. doi: 10.1007/s13762-019-02215-8
  • Ghosh, B., Ali Md, N., & Gantait, S. (2016). Response of Rice under Salinity Stress: A Review Update. Rice Research: Open Access, 4(2), 2–8. doi: 10.4172/2375-4338.1000167
  • Giannakoula, A., Therios, I., & Chatzissavvidis, C. (2021). Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. the role of antioxidants in oxidative damage as a response to heavy metal stress. Plants, 10(155), 1–14. doi: 10.3390/plants10010155
  • Gill, R. A., Zang, L., Ali, B., Farooq, M. A., Cui, P., Yang, S., Ali, S., & Zhou, W. (2015). Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere, 120, 154–164. doi: 10.1016/j.chemosphere.2014.06.029
  • Gomes, M. P., de Sáe Melo Marques, T. C. L. L., de Oliveira Gonçalves Nogueira, M., de Castro, E. M., & Soares, Â. M. (2011). Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agri., 68(5), 566–573. doi: 10.1590/S0103-90162011000500009
  • Gouveia, C., Kreusch, M., Schmidt, E. C., Marthiellen, M. R., Osorio, L. K. P., Pereira, D. T., Dos Santos, R., Ouriques, L. C., De Paula Martins, R., Latini, A., Ramlov, F., Carvalho, T. J. G., Chow, F., Maraschin, M., & Bouzon, Z. L. (2013). The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microscopy and Microanalysis, 19(3), 513–524. doi: 10.1017/S1431927613000317
  • Gupta, M., Dwivedi, V., Kumar, S., Patel, A., Niazi, P., & Yadav, V. K. (2024). Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signaling and Behavior, 19(1), 1-21. doi: 10.1080/15592324.2024.2365576
  • Gupta, S., & Chakrabarti, S. K. (2013). Effect of Heavy Metals on Different Anatomical Structures of Bruguiera sexangula. International Journal of Bio-Resource and Stress Management, 4(4), 605–609.
  • Hamza, S. M., Malik Al-Saadi, S. A. A., & Al-Abbawy, D. A. H. (2020). A study of physical and anatomical characteristics of the heavy metal accumulation of Juncus rigidus desfontaines, 1798 (family, juncaceae) in basrah province, southeren of iraq. Bulletin of the Iraq Natural History Museum, 16(1), 63–81. doi: 10.26842/BINHM.7.2020.16.1.0063
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198. doi: 10.1016/0003-9861(68)90654-1
  • Huihui, Z., Xin, L., Zisong, X., Yue, W., Zhiyuan, T., Meijun, A., Yuehui, Z., Wenxu, Z., Nan, X., & Guangyu, S. (2020). Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety, 195, 1-11. doi: 10.1016/j.ecoenv.2020.110469
  • Iqbal, M. M., Murtaza, G., Naz, T., Javed, W., Hussain, S., Ilyas, M., Anjum, M. A., Shahzad, S. M., Ashraf, M., & Iqbal, Z. (2017). Uptake, Translocation of Pb and Chlorophyll Contents of Oryza Sativa as Influenced by Soil-Applied Amendments under Normal and Salt-Affected Pb-Spiked Soil Conditions. Asian Journal of Agriculture and Biology, 5(1), 15–25.
  • Jayasri, M. A., & Suthindhiran, K. (2017). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Applied Water Science, 7(3), 1247–1253. doi: 10.1007/s13201-015-0376-x
  • Kajla, M., Kumar Yadav, V., Khokhar, J., Singh, S., Chhokar, R. S., Meena, R. P., & Sharma, R. K. (2015). Increase in wheat production through management of abiotic stresses: A review. Journal of Applied and Natural Science, 7(2), 1070–1080. Retrieved from www.ansfoundation.org
  • Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2014). Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) inducedin Triticum aestivum by Pb2+ treatment. Protoplasma, 251(6), 1407–1416. doi: 10.1007/s00709-014-0642-z
  • Kaya, C., Şenbayram, M., Akram, N. A., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports, 10(1), 1-13. doi: 10.1038/s41598-020-62669-6
  • King, M. A., Sogbanmu, T. O., Osibona, A. O., Doherty, F., & Otitoloju, A. A. (2012). Toxicological Evaluation and Usefulness of Lipid Peroxidation as Biomarker of Exposure to Crude Oil and Petroleum Products Tested against African Catfish, Clarias gariepinus and Hermit Crab, Clibanarius africanus. Nature Environment and Pollution Technolojy, 11(1), 1–6. Retrieved from www.neptjournal.com
  • Kumar, A., & Prasad, M. N. V. (2018). Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicology and Environmental Safety, 166, 401–418. doi: 10.1016/j.ecoenv.2018.09.113
  • Kumar, A., Prasad, M. N. V., Mohan Murali Achary, V., & Panda, B. B. (2013). Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environmental Science and Pollution Research, 20(7), 4551–4561. doi: 10.1007/s11356-012-1354-6
  • Kumar, S., Sharma, P., Misra, M., & Narayan, A. (2018). Lead induced root and shoot growth reduction in wheat (Triticum aestivum L .) is due to increase in membrane lipid peroxidation. Journal of Pharmacognosy and Phytochemistry, 7, 2080–2083.
  • Laliberte, G., & Hellebust, J. A. (1989). Pyrroline-5-Carboxylate reductase in Chlorella autotrophica and Chlorella saccharophila in relation to osmoregulation’. Plant Physiol, 91, 917–923. Retrieved from https://academic.oup.com/plphys/article/91/3/917/6084538
  • Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., & Sayah, F. (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus - Biologies, 334, 118–126. doi: 10.1016/j.crvi.2010.12.006
  • Li, X., Bu, N., Li, Y., Ma, L., Xin, S., & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of Hazardous Materials, 213–214, 55–61. doi: 10.1016/j.jhazmat.2012.01.052
  • Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. doi: 10.1016/0076-6879(87)48036-1
  • Lima, A. I. G., Pereira, S. I. A., Figueira, E. M. D. A. P., Caldeira, G. C. N., & De Matos Caldeira, H. D. Q. (2006). Cadmium detoxification in roots of Pisum sativum seedlings: Relationship between toxicity levels, thiol pool alterations and growth. Environmental and Experimental Botany, 55, 149–162. doi: 10.1016/j.envexpbot.2004.10.008
  • Liza, S. J., Shethi, K. J., & Rashid, P. (2020). Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L.). Dhaka University Journal of Biological Sciences, 29(1), 45–52. doi: 10.3329/dujbs.v29i1.46530
  • Long, D. D., Fu, R. R., & Han, J. R. (2017). Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead. Folia Microbiologica, 62, 295–304. doi: 10.1007/s12223-017-0494-y
  • Ma, C., Liu, F. Y., Hu, B., Wei, M. B., Zhao, J. H., Zhang, K., & Zhang, H. Z. (2019). Direct evidence of lead contamination in wheat tissues from atmospheric deposition based on atmospheric deposition exposure contrast tests. Ecotoxicology and Environmental Safety, 185, 1-8. doi: 10.1016/j.ecoenv.2019.109688
  • Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397. doi: 10.1016/j.tplants.2006.06.007
  • Marques, D. M., Veroneze Júnior, V., da Silva, A. B., Mantovani, J. R., Magalhães, P. C., & de Souza, T. C. (2018). Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea courbaril L. (Caesalpinioideae). Water, Air, and Soil Pollution, 229(138), 1–14. doi: 10.1007/s11270-018-3769-2
  • Martinka, M., Vaculík, M., & Lux, A. (2014). Plant cell responses to cadmium and zinc. Plant Cell Monographs, 22, 209–246. doi: 10.1007/978-3-642-41787-0_7
  • Martins, J. P. R., Souza, A. F. C., Rodrigues, L. C. A., Braga, P. C. S., Gontijo, A. B. P. L., & Falqueto, A. R. (2020). Zinc and selenium as modulating factors of the anatomy and physiology of billbergia zebrina (Bromeliaceae) during in vitro culture. Photosynthetica, 58(5), 1068–1077. doi: 10.32615/ps.2020.058
  • Mitter, R. (2002). Oxidative stress, antioxidants andstress tolerance. TRENDS in Plant Science, 7(9), 405–410.
  • Molefe, R. R., Amoo, A. E., & Babalola, O. O. (2023). Communication between plant roots and the soil microbiome; involvement in plant growth and development. Symbiosis, 90, 231–239. doi: 10.1007/s13199-023-00941-9
  • Mroczek-Zdyrska, M., & Wójcik, M. (2012). The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biological Trace Element Research, 147, 320–328. doi: 10.1007/s12011-011-9292-6
  • Muszyńska, E., Labudda, M., Kamińska, I., Górecka, M., & Bederska-Błaszczyk, M. (2019). Evaluation of heavy metal-induced responses in Silene vulgaris ecotypes. Protoplasma, 256(5), 1279–1297. doi: 10.1007/s00709-019-01384-0
  • Mysliwa-Kurdziel, B., & Strzalka, K. (2002). Influence of metals on biosynthesis of photosynthetic pigments. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, 8, 201–227.
  • Nazir, A., Rafique, F., Ahmed, K., Khan, S. A., Khan, N., Akbar, M., & Zafar, M. (2021). Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microscopy Research and Technique, 84(11), 2517–2529. doi: 10.1002/jemt.23801
  • Neto Cunha, R. A. da, Westin, T. B., Ambrósio, A. dos S., Calvelli, J. V. B., Santos, B. R., Souza, T. C. De, Carvalho, M., & Barbosa, S. (2025). Cumulative potential of Lactuca sativa L. and physiological and anatomical damage when exposed to lead. Ecotoxicology and Environmental Safety, 32, 9975–9984. doi: 10.1007/s11356-025-36339-x
  • Olmez, E., Gokmese, E., Ergun, U., & Gokmese, F. (2023). Monitoring of Lead and Some Heavy Metals in Wheat Flour of Corum Province, Turkey: An Air Quality Comparison. Hittite Journal of Science and Engineering, 10(1), 49–56. doi: 10.17350/hjse19030000290
  • Paleg, L. G., Stewart, G. R., & Bradbeer, J. W. (1984). Proline and Glycine Betaine Influence Protein Solvation’. Plant Physiol, 75, 974–978. Retrieved from https://academic.oup.com/plphys/article/75/4/974/6079420
  • Pandey, P., & Tripathi, A. K. (2011). Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. International Journal of Environmental Sciences, 1(5), 1009–1018.
  • Pierart, A., Shahid, M., Séjalon-Delmas, N., & Dumat, C. (2015). Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. Journal of Hazardous Materials, 289, 219–234. doi: 10.1016/j.jhazmat.2015.02.011
  • Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration and Biodegradation, 151, 1-11. doi: 10.1016/j.ibiod.2020.104992
  • Piwowarczyk, B., Tokarz, K., Muszyńska, E., Makowski, W., Jędrzejczyk, R., Gajewski, Z., & Hanus-Fajerska, E. (2018). The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Environmental Science and Pollution Research, 25(20), 19739–19752. doi: 10.1007/s11356-018-2197-6
  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead Uptake, Toxicity, and Detoxification in Plants. Reviews of Environmental Contamination and Toxicology, 213, 13–136.
  • Qufei, L., & Fashui, H. (2009). Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biological Trace Element Research, 129(1–3), 251–260. doi: 10.1007/s12011-008-8283-8
  • Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., & Ghazaryan, K. (2018). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment, 645, 1103–1113. doi: 10.1016/j.scitotenv.2018.07.211
  • Ribeiro, V. E., Pereira, M. P., de Castro, E. M., Corrêa, F. F., Cardoso, M. das G., & Pereira, F. J. (2019). Enhanced essential oil and leaf anatomy of Schinus molle plants under lead contamination. Industrial Crops and Products, 132, 92–98. doi: 10.1016/j.indcrop.2019.02.014
  • Ritchie, R. J., & Mekjinda, N. (2016). Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis. Ecotoxicology and Environmental Safety, 132, 178–185. doi: 10.1016/j.ecoenv.2016.06.004
  • Romanowska, E., Wróblewska, B., Drożak, A., Zienkiewicz, M., & Siedlecka, M. (2008). Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants grown in high and low irradiance. Biologia Plantarum, 52(1), 80–86.
  • Romero-Puertas, M. C., Palma, J. M., Gómez, M., Río, L. A. Del, & Sandalio, L. M. (2002). Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment, 25, 677–686. doi: 10.1046/j.0016-8025.2002.00850.x
  • Salavati, J., Fallah, H., Niknejad, Y., & Barari Tari, D. (2021). Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiology and Molecular Biology of Plants, 27(5), 1089–1104. doi: 10.1007/s12298-021-00993-5
  • Samad, R., Rashid, P., & Karmoker, J. (2020). Anatomical responses of rice (Oryza sativa L.) to aluminium toxicity. Journal of Bangladesh Academy of Sciences, 43(2), 123–131. doi: 10.3329/jbas.v43i2.45733
  • Sandalio, L. M., Dalurzo, H. C., Gó Mez, M., Romero-Puertas, M. C., & Del Río, L. A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botan, 52(364), 2115–2126.
  • Serengin, I. V., & Kozhevnikova, A. D. (2005). Distribution of cadmium, lead, nickel, and strontium in imbibing maize caryopses. Russian Journal of Plant Physiology, 52(4), 635–640.
  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Braz. J. Plant. Physiol., 17, 35–52.
  • Shi, G. R., & Cai, Q. S. (2008). Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica, 46(4), 627–630.
  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060.
  • Souahi, H., Chebout, A., Akrout, K., Massaoud, N., & Gacem, R. (2021). Physiological responses to lead exposure in wheat, barley and oat. Environmental Challenges, 4. doi: 10.1016/j.envc.2021.100079
  • Souahi, H., Gharbi, A., & Gassarellil, Z. (2017). Growth and physiological responses of cereals species under lead stress. International Journal of Biosciences (IJB), 11(1), 266–273. doi: 10.12692/ijb/11.1.266-273
  • Suseela, M. R., Sinha, S., Singh, S., & Saxena, R. (2002). Accumulation of chromium and scanning electron microscopic studies in Scirpus lacustris L. treated with metal and tannery effluent. Bull. Environ. Contam. Toxicol, 68, 540–548. doi: 10.1007/s00128-001-0288-3
  • Tauhida, N., Harnelly, E., Nasir, M., & Bahi, M. (2022). Anatomical changes of Ipomoea reptans due to mercury uptake and accumulation in contaminant soil. Jurnal Natural, 22(1), 31–35. doi: 10.24815/jn.v22i1.23198
  • Trivedi, S., & Erdei, L. (1992). Effects of cadmium and lead on the accumulation of Ca+2 and K+and on the influx and translocation of K+ in wheat of low andhigh K+ status. Physiologia Plantarum, 84, 94–100.
  • Tung, G., & Temple, P. J. (1996). Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy. The Science of the Total Environment, 188, 71–85.
  • Tupan, C. I., & Azrianingsih, R. (2016). Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux, 9(3), 580–589. Retrieved from http://www.bioflux.com.ro/aacl
  • Ur Rahman, S., Qin, A., Zain, M., Mushtaq, Z., Mehmood, F., Riaz, L., Naveed, S., Ansari, M. J., Saeed, M., Ahmad, I., & Shehzad, M. (2024). Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon, 10(6). doi: 10.1016/j.heliyon.2024.e27724
  • Usman, K., Abu-Dieyeh, M. H., Zouari, N., & Al-Ghouti, M. A. (2020). Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Scientific Reports, 10(1), 1–10. doi: 10.1038/s41598-020-73621-z
  • Vaculík, M., Landberg, T., Greger, M., Luxová, M., Stolárikova, M., & Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Annals of Botany, 110(2), 433–443. doi: 10.1093/aob/mcs039
  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645–655. doi: 10.1016/S0168-9452(03)00022-0
  • Waszczak, C., Carmody, M., & Kangasjärvi, J. (2018). Annual review of plant biology reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209–236. doi: 10.1146/annurev-arplant-042817
  • Weryszko-Chmielewska, E., & Chwil, M. (2005). Lead-Induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci. Plant Nutr, 51(2), 203–212.
  • Xiao, H., Peng, S., Liu, X., Jia, J., & Wang, H. (2021). Phytoremediation of nutrients and organic carbon from contaminated water by aquatic macrophytes and the physiological response. Environmental Technology and Innovation, 21. doi: 10.1016/j.eti.2020.101295
  • Yadav, V., Arif, N., Kováč, J., Singh, V. P., Tripathi, D. K., Chauhan, D. K., & Vaculík, M. (2021). Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiology and Biochemistry, 159, 100–112. doi: 10.1016/j.plaphy.2020.11.047
  • Zarinkamar, F., Ghelich, S., & Soleimanpour, S. (2013). Toxic effects of pb on anatomy and hypericin content in Hypericum perforatum L. Bioremediation Journal, 17(1), 40–51. doi: 10.1080/10889868.2012.751958
  • Zhang, F. Q., Wang, Y. S., Lou, Z. P., & Dong, J. De. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67, 44–50. doi: 10.1016/j.chemosphere.2006.10.007
  • Zhang, Jixiang, Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and ROS-Mediated Cellular Signaling. Oxidative Medicine and Cellular Longevity, 2016, 1-18. doi: 10.1155/2016/4350965
  • Zhang, Junji, Shi, Z., Ni, S., Wang, X., Liao, C., & Wei, F. (2021). Source identification of Cd and Pb in typical farmland topsoil in the southwest of China: A case study. Sustainability (Switzerland), 13(7), 1-11. doi: 10.3390/su13073729
  • Zhao, Y., Xia, Q., Yin, J. J., Lin, G., & Fu, P. P. (2011). Photoirradiation of dehydropyrrolizidine alkaloids-Formation of reactive oxygen species and induction of lipid peroxidation. Toxicology Letters, 205, 302–309. doi: 10.1016/j.toxlet.2011.06.020
There are 109 citations in total.

Details

Primary Language English
Subjects Ecology (Other)
Journal Section Articles
Authors

Adnan Akçin 0000-0001-7767-6613

Zakire Tülay Aytaş Akçin 0000-0002-1716-3936

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date February 13, 2025
Acceptance Date June 13, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Akçin, A., & Aytaş Akçin, Z. T. (2025). Physiological and Anatomical Changes Induced in Wheat (Triticum aestivum cv. Hendrix) by Lead Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(3), 498-516. https://doi.org/10.29133/yyutbd.1639190
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.