Research Article
BibTex RIS Cite

Year 2025, Volume: 35 Issue: 3, 448 - 462, 30.09.2025
https://doi.org/10.29133/yyutbd.1641243

Abstract

References

  • Acar, İ. (2023). Utilization potential of poultry litter ash as phosphorus-based fertilizer. Environmental Research and Technology, 6(2), 102–107.
  • Acurio Vásconez, R. D., Mamarandi Mossot, J. E., Ojeda Shagñay, A. G., Tenorio Moya, E. M., Chiluisa Utreras, V. P., & Vaca Suquillo, I. D. L. Á. (2020). Evaluation of Bacillus spp. as plant growth-promoting rhizobacteria (PGPR) in broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa). Ciencia y Tecnología Agropecuaria, 21(3).
  • Anonymous, 2023. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/P...%20Raporu%202023-381%20TEPGE.pdf. Access date 12.01.2024
  • Arslan, Y., Subaşi, İ., Yaşar, M., & İşler, B. (2022). Pelemir (Cephalaria syriaca). Stratejik Sektör: Tarım (ss. 357–376). İKSAD Yayın Evi. ISBN: 978-625-8405-49-1.
  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361–376.
  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45, 405–413. https://doi.org/10.1007/s00374-008-0344-9
  • Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
  • Bauer, P. J., Szogi, A. A., & Shumaker, P. D. (2019). Fertilizer efficacy of poultry litter ash blended with lime or gypsum as fillers. Environments, 6(5), 50. https://doi.org/10.3390/environments6050050
  • Baytop, T. (1999). Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Bhavya, V. P., Thippeshappa, G. N., Sarvajna, B. S., Nandish, M., & Sunil, C. (2022). Effect of microbial culture on phosphorus release in fly ash amended soil under laboratory incubation study. The Pharma Innovation Journal, 11(3), 721–726.
  • Bock, B. R. (2004). Poultry litter to energy: Technical and economic feasibility. Carbon, 24(27.2), 432.
  • Calderon, R. B., Jeong, C., Ku, H. H., Coghill, L. M., Ju, Y. J., Kim, N., & Ham, J. H. (2021). Changes in the microbial community in soybean plots treated with biochar and poultry litter. Agronomy, 11(7), 1428. https://doi.org/10.3390/agronomy11071428
  • Cempa, M., Olszewski, P., Wierzchowski, K., Kucharski, P., & Białecka, B. (2022). Ash from poultry manure incineration as a substitute for phosphorus fertiliser. Materials, 15(9), 3023. https://doi.org/10.3390/ma15093023
  • Çiller, M. (1977). A study on the oil of pelemir seeds. Marmara Scientific and Industrial Research Institute, Gebze/Kocaeli.
  • Codling, E. E. (2006). Laboratory characterization of extractable phosphorus in poultry litter and poultry litter ash. Soil Science, 171(11), 858–864.
  • Codling, E. E., Chaney, R. L., & Sherwell, J. (2002). Poultry litter ash as a potential phosphorus source for agricultural crops. Journal of Environmental Quality, 31(3), 954–961.
  • Demeyer, A., Nkana, J. V., & Verloo, M. G. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresource Technology, 77(3), 287–295.
  • Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61(1), 593–620.
  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root-colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563–571. https://doi.org/10.1007/s00374-009-0366-y
  • El Agyzy, F., & Aboukota, M. (2019). Impact of soil salinity on available macronutrients uptake by wheat plant. Menoufia Journal of Soil Science, 4(2), 113–128.
  • Ervin, C. (2019). Poultry litter ash as an alternative fertilizer source for corn (Doctoral dissertation). Virginia Polytechnic Institute and State University, Eastern Shore Agricultural Extension and Research Center, Virginia.
  • Ervin, C., Reiter, M. S., Thomason, W. E., Maguire, R. O., & Brooks, W. (2019, November). Poultry litter ash physical and chemical characteristics that impact use as an alternative phosphorus fertilizer. In ASA, CSSA and SSSA International Annual Meetings (2019). ASA-CSSA-SSSA.
  • Fahimi, A., Bilo, F., Assi, A., Dalipi, R., Federici, S., Guedes, A., ... & Bontempi, E. (2020). Poultry litter ash characterisation and recovery. Waste Management, 111, 10–21. https://doi.org/10.1016/j.wasman.2020.04.006
  • Faridullah, Irshad, M., Eneji, A. E., & Mahmood, Q. (2013). Plant nutrient release from poultry litter and poultry litter ash amended soils by various extraction methods. Journal of Plant Nutrition, 36(3), 357–371. https://doi.org/10.1080/01904167.2012.744038
  • Faridullah, Irshad, M., Yamamoto, S., Eneji, A. E., Uchiyama, T., & Honna, T. (2009). Recycling of chicken and duck litter ash as a nutrient source for Japanese mustard spinach. Journal of Plant Nutrition, 32(7), 1082–1091. https://doi.org/10.1080/01904160902943122
  • Geilfus, C. M. (2017). The pH of the apoplast: Dynamic factor with functional impact under stress. Molecular Plant, 10(11), 1371–1386. https://doi.org/10.1016/j.molp.2017.10.003
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hashimoto, Y., Taki, T., & Sato, T. (2009). Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: Investigations for immobilization potentials. Journal of Environmental Science and Health, Part A, 44(6), 583–590. https://doi.org/10.1080/10934520902784617
  • Islam, F., Yasmeen, T., Ali, S., Ali, B., Farooq, M. A., & Gill, R. A. (2015). Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiologiae Plantarum, 37, 1–12. https://doi.org/10.1007/s11738-015-1796-y
  • Jastrzębska, M., Kostrzewska, M. K., Treder, K., Jastrzębski, W. P., & Makowski, P. (2016). Phosphorus biofertilizers from ash and bones—Agronomic evaluation of functional properties. Journal of Agricultural Science, 8(6), 58–70. https://doi.org/10.5539/jas.v8n6p58
  • Kacar, B. (1994). Chemical analysis of plant and soil: III. Soil analysis. Agriculture Faculty Education Research and Development Foundation Publication.
  • Kacar, B., & Inal, A. (2008). Plant analyses. Nobel Publication.
  • Kumar, A., Singh, V. K., Tripathi, V., Singh, P. P., & Singh, A. K. (2018). Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress. In R. Prasad, S. S. Gill, & N. Tuteja (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 333–342). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-444-63504-4.00019-6
  • Lin, Y., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2018). Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Communications in Soil Science and Plant Analysis, 49(10), 1239–1255. https://doi.org/10.1080/00103624.2018.1457155
  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253, 201–218. https://doi.org/10.1023/A:1024553303144
  • Olowoboko, T. B., Azeez, J. O., Olujimi, O. O., & Babalola, O. A. (2018). Comparative evaluation of animal manures and their ashes on soil pH and electrical conductivity in some southwestern Nigerian soils. Communications in Soil Science and Plant Analysis, 49(12), 1442–1454. https://doi.org/10.1080/00103624.2018.1464184
  • Pandey, D. S., Yazhenskikh, E., Müller, M., Ziegner, M., Trubetskaya, A., Leahy, J. J., & Kwapinska, M. (2021). Transformation of inorganic matter in poultry litter during fluidised bed gasification. Fuel Processing Technology, 221, Article 106918. https://doi.org/10.1016/j.fuproc.2021.106918
  • Prakash, L., & Parthapasenan, G. (1990). Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellin-like substances and yield of rice (Oryza sativa). Plant Science, 100, 173–181. https://doi.org/10.1016/0168-9452(94)90111-2
  • Rebi, A., Hafiz, M. K., Chaudhry, U. F., Zaib, M., Shahid, M., Safdar, M., & Afzal, A. (2022). Phosphorus availability in soil and uptake by maize from rock phosphate inoculated with PGPR: A review. Journal of Plant Nutrition, 45, 341–355. https://doi.org/10.1080/01904167.2021.1996187
  • Rehan, M., Al-Turki, A., Abdelmageed, A. H., Abdelhameid, N. M., & Omar, A. F. (2023). Performance of plant-growth-promoting rhizobacteria (PGPR) isolated from sandy soil on growth of tomato (Solanum lycopersicum L.). Plants, 12(8), 1588. https://doi.org/10.3390/plants12081588
  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272. https://doi.org/10.1016/j.apsoil.2012.01.006
  • Saeidnejad, A. H., Kafi, M., & Pessarakli, M. (2016). Interactive effects of salinity stress and Zn availability on physiological properties, antioxidant activity, and micronutrients content of wheat (Triticum aestivum). Communications in Soil Science and Plant Analysis, 47(8), 1048–1057. https://doi.org/10.1080/00103624.2016.1148995
  • Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences, 10, 7326. https://doi.org/10.3390/app10207326
  • Shober, A. L., Hesterberg, D. L., Sims, J. T., & Gardner, S. (2006). Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. Journal of Environmental Quality, 35(6), 1983–1993. https://doi.org/10.2134/jeq2006.0100
  • Sönmez, F., Çığ, F., Erman, M., & Tüfenkçi, Ş. (2013). Effects of Zinc, salt and Mycorrhiza Applications on the Development and the Phosphorus and Zinc Uptake of Maize. Yuzuncu Yıl University Journal of Agricultural Sciences, 23(1), 1–9.
  • Szogi, A. A., & Vanotti, M. B. (2009). Prospects for phosphorus recovery from poultry litter. Bioresource Technology, 100(22), 5461–5465. https://doi.org/10.1016/j.biortech.2009.04.009
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Vance, C. L., Gaston, J., & Beasley, J. (2021). Bermudagrass establishment on infertile soil: Growth and phosphorus losses with poultry litter and triple superphosphate. Communications in Soil Science and Plant Analysis, 52(8), 886–895. https://doi.org/10.1080/00103624.2020.1869771
  • Wickham, H. (2011). Wiley Interdisciplinary Reviews: Computational Statistics, 3, 180–185. https://doi.org/10.1002/wics.147
  • Yaldız, G., Özen, F., Çamlıca, M., & Sönmez, F. (2018). Alleviation of salt stress by increasing potassium sulphate doses in four medicinal and aromatic plants. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68(5), 437–447. https://doi.org/10.1080/09064710.2018.1441040
  • Yusof, M. R. M., Ahmed, O. H., King, W. S., & Zakry, F. A. A. (2015). Effects of biochar and chicken litter ash on selected soil chemical properties and nutrients uptake by Oryza sativa L. International Journal of Biosciences, 6(3), 360–369.
  • Zhao, D. Y., Gao, S., Zhang, X. L., Zhang, Z. W., Zheng, H. Q., Rong, K., … Khan, S. A. (2021). Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant, Soil and Environment, 67, 61–70. https://doi.org/10.17221/537/2020-PSE
  • Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445. https://doi.org/10.1016/S1369-5266(03)00085-2

The Effect of PGPR and Chicken Litter Ash Applications on the Development, Nutrient Element, and Heavy Metal Content of Cephalaria syriaca L.

Year 2025, Volume: 35 Issue: 3, 448 - 462, 30.09.2025
https://doi.org/10.29133/yyutbd.1641243

Abstract

This problem has been solved by incinerating chicken litter waste, which causes environmental pollution. The resulting chicken litter ash is a valuable source of phosphorus and potassium.This study examined the effects of increasing doses of chicken litter ash (CLA), combined with Plant Growth-Promoting Rhizobacteria (PGPR), on the growth and elemental composition of Cephalaria syriaca L. Chicken litter ash was applied to pots containing 2 kg of soil at 0%, 1%, 2%, and 4% rates. Microbial fertilizer was applied to some pots in combination with ash, while others were left untreated. At the end of the experiment, soil samples were analysed for soil pH, soil salinity (EC), plant growth parameters, nutrient elements, and heavy metal content of Cephalaria syriaca L. The results showed that CLA significantly influenced soil pH, EC, plant height, fresh weight, dry weight, and root fresh weight (P<0.01). The application of microbial fertilizer significantly affected EC, plant fresh and dry weights, root fresh weight, and leaf count (P<0.01), and root dry weight (P<0.05). Interaction effects between the ash and microbial fertilizer were significant for plant height, fresh weight, root fresh weight, dry weight, and root dry weight (P<0.01). Regarding nutrient elements and heavy metals, the CLA application, except Cu, Mn, and Ni, significantly impacted all elements at P<0.01 and P<0.05. The application of microbial fertilizer had no significant effect on the elements Ca, Cu, Ni, and Pb, while it significantly affected the other elements at P<0.01 and P<0.05 levels. Based on these results, it is concluded that chicken litter ash applications should be based on soil analysis, and that its use in combination with microbial fertilizers would be more beneficial.

References

  • Acar, İ. (2023). Utilization potential of poultry litter ash as phosphorus-based fertilizer. Environmental Research and Technology, 6(2), 102–107.
  • Acurio Vásconez, R. D., Mamarandi Mossot, J. E., Ojeda Shagñay, A. G., Tenorio Moya, E. M., Chiluisa Utreras, V. P., & Vaca Suquillo, I. D. L. Á. (2020). Evaluation of Bacillus spp. as plant growth-promoting rhizobacteria (PGPR) in broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa). Ciencia y Tecnología Agropecuaria, 21(3).
  • Anonymous, 2023. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/P...%20Raporu%202023-381%20TEPGE.pdf. Access date 12.01.2024
  • Arslan, Y., Subaşi, İ., Yaşar, M., & İşler, B. (2022). Pelemir (Cephalaria syriaca). Stratejik Sektör: Tarım (ss. 357–376). İKSAD Yayın Evi. ISBN: 978-625-8405-49-1.
  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361–376.
  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45, 405–413. https://doi.org/10.1007/s00374-008-0344-9
  • Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140
  • Bauer, P. J., Szogi, A. A., & Shumaker, P. D. (2019). Fertilizer efficacy of poultry litter ash blended with lime or gypsum as fillers. Environments, 6(5), 50. https://doi.org/10.3390/environments6050050
  • Baytop, T. (1999). Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Bhavya, V. P., Thippeshappa, G. N., Sarvajna, B. S., Nandish, M., & Sunil, C. (2022). Effect of microbial culture on phosphorus release in fly ash amended soil under laboratory incubation study. The Pharma Innovation Journal, 11(3), 721–726.
  • Bock, B. R. (2004). Poultry litter to energy: Technical and economic feasibility. Carbon, 24(27.2), 432.
  • Calderon, R. B., Jeong, C., Ku, H. H., Coghill, L. M., Ju, Y. J., Kim, N., & Ham, J. H. (2021). Changes in the microbial community in soybean plots treated with biochar and poultry litter. Agronomy, 11(7), 1428. https://doi.org/10.3390/agronomy11071428
  • Cempa, M., Olszewski, P., Wierzchowski, K., Kucharski, P., & Białecka, B. (2022). Ash from poultry manure incineration as a substitute for phosphorus fertiliser. Materials, 15(9), 3023. https://doi.org/10.3390/ma15093023
  • Çiller, M. (1977). A study on the oil of pelemir seeds. Marmara Scientific and Industrial Research Institute, Gebze/Kocaeli.
  • Codling, E. E. (2006). Laboratory characterization of extractable phosphorus in poultry litter and poultry litter ash. Soil Science, 171(11), 858–864.
  • Codling, E. E., Chaney, R. L., & Sherwell, J. (2002). Poultry litter ash as a potential phosphorus source for agricultural crops. Journal of Environmental Quality, 31(3), 954–961.
  • Demeyer, A., Nkana, J. V., & Verloo, M. G. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresource Technology, 77(3), 287–295.
  • Dodd, A. N., Kudla, J., & Sanders, D. (2010). The language of calcium signaling. Annual Review of Plant Biology, 61(1), 593–620.
  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root-colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563–571. https://doi.org/10.1007/s00374-009-0366-y
  • El Agyzy, F., & Aboukota, M. (2019). Impact of soil salinity on available macronutrients uptake by wheat plant. Menoufia Journal of Soil Science, 4(2), 113–128.
  • Ervin, C. (2019). Poultry litter ash as an alternative fertilizer source for corn (Doctoral dissertation). Virginia Polytechnic Institute and State University, Eastern Shore Agricultural Extension and Research Center, Virginia.
  • Ervin, C., Reiter, M. S., Thomason, W. E., Maguire, R. O., & Brooks, W. (2019, November). Poultry litter ash physical and chemical characteristics that impact use as an alternative phosphorus fertilizer. In ASA, CSSA and SSSA International Annual Meetings (2019). ASA-CSSA-SSSA.
  • Fahimi, A., Bilo, F., Assi, A., Dalipi, R., Federici, S., Guedes, A., ... & Bontempi, E. (2020). Poultry litter ash characterisation and recovery. Waste Management, 111, 10–21. https://doi.org/10.1016/j.wasman.2020.04.006
  • Faridullah, Irshad, M., Eneji, A. E., & Mahmood, Q. (2013). Plant nutrient release from poultry litter and poultry litter ash amended soils by various extraction methods. Journal of Plant Nutrition, 36(3), 357–371. https://doi.org/10.1080/01904167.2012.744038
  • Faridullah, Irshad, M., Yamamoto, S., Eneji, A. E., Uchiyama, T., & Honna, T. (2009). Recycling of chicken and duck litter ash as a nutrient source for Japanese mustard spinach. Journal of Plant Nutrition, 32(7), 1082–1091. https://doi.org/10.1080/01904160902943122
  • Geilfus, C. M. (2017). The pH of the apoplast: Dynamic factor with functional impact under stress. Molecular Plant, 10(11), 1371–1386. https://doi.org/10.1016/j.molp.2017.10.003
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hashimoto, Y., Taki, T., & Sato, T. (2009). Extractability and leachability of Pb in a shooting range soil amended with poultry litter ash: Investigations for immobilization potentials. Journal of Environmental Science and Health, Part A, 44(6), 583–590. https://doi.org/10.1080/10934520902784617
  • Islam, F., Yasmeen, T., Ali, S., Ali, B., Farooq, M. A., & Gill, R. A. (2015). Priming-induced antioxidative responses in two wheat cultivars under saline stress. Acta Physiologiae Plantarum, 37, 1–12. https://doi.org/10.1007/s11738-015-1796-y
  • Jastrzębska, M., Kostrzewska, M. K., Treder, K., Jastrzębski, W. P., & Makowski, P. (2016). Phosphorus biofertilizers from ash and bones—Agronomic evaluation of functional properties. Journal of Agricultural Science, 8(6), 58–70. https://doi.org/10.5539/jas.v8n6p58
  • Kacar, B. (1994). Chemical analysis of plant and soil: III. Soil analysis. Agriculture Faculty Education Research and Development Foundation Publication.
  • Kacar, B., & Inal, A. (2008). Plant analyses. Nobel Publication.
  • Kumar, A., Singh, V. K., Tripathi, V., Singh, P. P., & Singh, A. K. (2018). Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress. In R. Prasad, S. S. Gill, & N. Tuteja (Eds.), New and future developments in microbial biotechnology and bioengineering (pp. 333–342). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-444-63504-4.00019-6
  • Lin, Y., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2018). Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Communications in Soil Science and Plant Analysis, 49(10), 1239–1255. https://doi.org/10.1080/00103624.2018.1457155
  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253, 201–218. https://doi.org/10.1023/A:1024553303144
  • Olowoboko, T. B., Azeez, J. O., Olujimi, O. O., & Babalola, O. A. (2018). Comparative evaluation of animal manures and their ashes on soil pH and electrical conductivity in some southwestern Nigerian soils. Communications in Soil Science and Plant Analysis, 49(12), 1442–1454. https://doi.org/10.1080/00103624.2018.1464184
  • Pandey, D. S., Yazhenskikh, E., Müller, M., Ziegner, M., Trubetskaya, A., Leahy, J. J., & Kwapinska, M. (2021). Transformation of inorganic matter in poultry litter during fluidised bed gasification. Fuel Processing Technology, 221, Article 106918. https://doi.org/10.1016/j.fuproc.2021.106918
  • Prakash, L., & Parthapasenan, G. (1990). Interactive effect of NaCl salinity and gibberellic acid on shoot growth, content of abscisic acid and gibberellin-like substances and yield of rice (Oryza sativa). Plant Science, 100, 173–181. https://doi.org/10.1016/0168-9452(94)90111-2
  • Rebi, A., Hafiz, M. K., Chaudhry, U. F., Zaib, M., Shahid, M., Safdar, M., & Afzal, A. (2022). Phosphorus availability in soil and uptake by maize from rock phosphate inoculated with PGPR: A review. Journal of Plant Nutrition, 45, 341–355. https://doi.org/10.1080/01904167.2021.1996187
  • Rehan, M., Al-Turki, A., Abdelmageed, A. H., Abdelhameid, N. M., & Omar, A. F. (2023). Performance of plant-growth-promoting rhizobacteria (PGPR) isolated from sandy soil on growth of tomato (Solanum lycopersicum L.). Plants, 12(8), 1588. https://doi.org/10.3390/plants12081588
  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272. https://doi.org/10.1016/j.apsoil.2012.01.006
  • Saeidnejad, A. H., Kafi, M., & Pessarakli, M. (2016). Interactive effects of salinity stress and Zn availability on physiological properties, antioxidant activity, and micronutrients content of wheat (Triticum aestivum). Communications in Soil Science and Plant Analysis, 47(8), 1048–1057. https://doi.org/10.1080/00103624.2016.1148995
  • Shilev, S. (2020). Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences, 10, 7326. https://doi.org/10.3390/app10207326
  • Shober, A. L., Hesterberg, D. L., Sims, J. T., & Gardner, S. (2006). Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. Journal of Environmental Quality, 35(6), 1983–1993. https://doi.org/10.2134/jeq2006.0100
  • Sönmez, F., Çığ, F., Erman, M., & Tüfenkçi, Ş. (2013). Effects of Zinc, salt and Mycorrhiza Applications on the Development and the Phosphorus and Zinc Uptake of Maize. Yuzuncu Yıl University Journal of Agricultural Sciences, 23(1), 1–9.
  • Szogi, A. A., & Vanotti, M. B. (2009). Prospects for phosphorus recovery from poultry litter. Bioresource Technology, 100(22), 5461–5465. https://doi.org/10.1016/j.biortech.2009.04.009
  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of botany, 91(5), 503-527. https://doi.org/10.1093/aob/mcg058
  • Vance, C. L., Gaston, J., & Beasley, J. (2021). Bermudagrass establishment on infertile soil: Growth and phosphorus losses with poultry litter and triple superphosphate. Communications in Soil Science and Plant Analysis, 52(8), 886–895. https://doi.org/10.1080/00103624.2020.1869771
  • Wickham, H. (2011). Wiley Interdisciplinary Reviews: Computational Statistics, 3, 180–185. https://doi.org/10.1002/wics.147
  • Yaldız, G., Özen, F., Çamlıca, M., & Sönmez, F. (2018). Alleviation of salt stress by increasing potassium sulphate doses in four medicinal and aromatic plants. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68(5), 437–447. https://doi.org/10.1080/09064710.2018.1441040
  • Yusof, M. R. M., Ahmed, O. H., King, W. S., & Zakry, F. A. A. (2015). Effects of biochar and chicken litter ash on selected soil chemical properties and nutrients uptake by Oryza sativa L. International Journal of Biosciences, 6(3), 360–369.
  • Zhao, D. Y., Gao, S., Zhang, X. L., Zhang, Z. W., Zheng, H. Q., Rong, K., … Khan, S. A. (2021). Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant, Soil and Environment, 67, 61–70. https://doi.org/10.17221/537/2020-PSE
  • Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445. https://doi.org/10.1016/S1369-5266(03)00085-2
There are 53 citations in total.

Details

Primary Language English
Subjects Plant Nutrition and Soil Fertility
Journal Section Articles
Authors

Yusuf Arslan 0000-0001-8496-6037

Hanife Ustabaş 0009-0004-2481-0363

Berfin İşler 0000-0002-4656-8879

Ferit Sönmez 0000-0003-1437-4081

Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date February 17, 2025
Acceptance Date August 21, 2025
Published in Issue Year 2025 Volume: 35 Issue: 3

Cite

APA Arslan, Y., Ustabaş, H., İşler, B., Sönmez, F. (2025). The Effect of PGPR and Chicken Litter Ash Applications on the Development, Nutrient Element, and Heavy Metal Content of Cephalaria syriaca L. Yuzuncu Yıl University Journal of Agricultural Sciences, 35(3), 448-462. https://doi.org/10.29133/yyutbd.1641243
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.