Research Article
BibTex RIS Cite

Technological Innovations Against Future Pandemics with Novel Strategies for Food Safety

Year 2025, Volume: 6 Issue: 2, 7 - 15, 02.04.2025
https://doi.org/10.55549/zbs.1635953

Abstract

Abstract
The protection of food safety has been a global concern, especially in light of potential future pandemics. Consequently, food safety issues have been increasingly emerging. Strategies for designing customer experience, such as customer listening strategies should be continuously enriched with innovations in products and services. Nonthermal technologies such as nanotechnology, cold plasma, and ozone applications can be considered and applied to ensure food safety. These are alternative methods for treating virus-contaminated food package surfaces. Electrochemical, optical biosensors, and a combination of nanomaterials, nanomaterials-integrated biosensing approach are promising for fast detection of future zoonotic viruses. These developments will lead to the detection of new zoonotic viruses or variants.

References

  • Ayşen Ç. D. (2022). COVID-19, Food Safety, Risk Assessment, and Future Approaches in the Food Industry. Handbook of Research on Global Hospitality and Tourism Management. 115-138. Doi: 10.4018/978-1-7998-9148-2.ch006.
  • Ayseli MT, Çetinkaya T, Ayseli YI. (2024) Innovative Food Safety Approaches and Nutraceuticals to Promote Children’s Health on Future Outbreaks with the Reflection of COVID-19. In : Rezaei N, ed. The COVID-19 Aftermath. Advances in Experimental Medicine and Biology. Springer. : 349–69.
  • Arriaga-Lorenzo P, de Jesús Maldonado-Simán E, Ramírez-Valverde R, Martínez-Hernández PA, Tirado-González DN, Saavedra-Jiménez LA. (2023). Cold chain relevance in the food safety of perishable products. Foods and Raw Materials 2022 ; : 116–28.
  • Biasin M, Bianco A, Pareschi G. (2021) UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports. 11:1;1–7.
  • Blondin-Brosseau M, Harlow J, Doctor T, Nasheri N.(2021). Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol. 98 : 103780.
  • Bojórquez-Velázquez E, Llamas-García ML, Elizalde-Contreras JM, Zamora-Briseño JA, Ruiz-May E. (2022). Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses. 14 : 872.
  • Bonfanti A, Vigolo V, Yfantidou G, Gutuleac R.(2023). Customer experience management strategies in upscale restaurants: Lessons from the Covid-19 pandemic. Int J Hosp Manag .109 : 103416.
  • Criscuolo E, Diotti RA, Ferrarese R. (2021). Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials. Emerg Microbes Infect. 10 : 206–10.
  • Ceylan Z, Ocak E, Uçar Y, Karakus K, Cetinkaya T. (2021). An overview of food safety and COVID-19 infection: nanotechnology and cold plasma applications, immune-boosting suggestions, hygienic precautions. Environmental and Health Management of Novel Coronavirus Disease (COVID-19 ). 325–44.
  • Capelli F, Tappi S, Gritti T. (2021). Decontamination of Food Packages from SARS-CoV-2 RNA with a Cold Plasma-Assisted System. Applied Sciences 2021 ; 11 : 4177. 47. Zhang F, Li Z, Yin L, et al. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. J Am Chem Soc. 143 : 12194–201.
  • Chen Z, Garcia G, Arumugaswami V, Wirz RE. (2020). Cold atmospheric plasma for SARS-CoV-2 inactivation. Physics of Fluids. 32 : 111702.
  • Chaix E, Boni M, Guillier L.(2022). Risk of Monkeypox virus (MPXV) transmission through the handling and consumption of food. Microb Risk Anal. 22 : 100237.
  • Chen R, Kan L, Duan F. (2021). Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Microchimica Acta. 188 : 1–10.
  • Dai H, Tang H, Sun W, Deng S, Han J. (2023). It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world. Science of The Total Environment. 868 : 161388.
  • Dai M, Li H, Yan N. (2020). Long-term survival of salmon-attached SARS-CoV-2 at 4°C as a potential source of transmission in seafood markets. bioRxiv. .
  • Farahmandfar R, Asnaashari M, Hesami B. (2021). Monitoring of new coronavirus (SARS-CoV-2): Origin, transmission, and food preservation methods. J Food Process Preserv . 45 : e15564.
  • Featherstone A.B, Mathijssen A.J.T.M, Brown A, Dass S.C (2024). SARS-CoV-2 Delta variant remains viable in environmental biofilms found in meat packaging plants. PLoS One, 19 : e0304504.
  • Featherstone AB, Brown AC, Dass SC.(2022). Murine Hepatitis Virus, a Biosafety Level 2 Model for SARS-CoV-2, Can Remain Viable on Meat and Meat Packaging Materials for at Least 48 Hours. Tamber S, ed. Microbiol Spectr .
  • Gharibzahedi SMT, Altintas Z. (2024). State-of-the-art sensor technologies for tracking SARS-CoV-2 in contaminated food and packaging: Towards the future techniques of food safety assurance. TrAC Trends in Analytical Chemistry. 170 : 117473.
  • Guo L, Yao Z, Yang L. (2020). Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal. 127742.
  • Guesmi A, Cherif MM, Baaloudj O. (2022). Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. Environmental Science and Pollution Research. 29 : 55321–35.
  • Huang X, Kon E, Han X. (2022). Nanotechnology-based strategies against SARS-CoV-2 variants. Nature Nanotechnology. 1–11.
  • Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. (2023). Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. Biosens Bioelectron X. 13 : 100324.
  • Kulawik P, Kumar Tiwari B. (2019). Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit Rev Food Sci Nutr. 59 : 3199–210.
  • Kulawik P, Rathod NB, Ozogul Y, Ozogul F, Zhang W. (2022). Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood.
  • Li X, Wang Q, Ding P (2021). Risk factors and on-site simulation of environmental transmission of SARS-CoV-2 in the largest wholesale market of Beijing, China. Science of The Total Environment. 778 : 146040.
  • Lu LC, Quintela I, Lin CH. (2021). A review of epidemic investigation on cold-chain food-mediated SARS-CoV-2 transmission and food safety consideration during COVID-19 pandemic. J Food Saf. 41 : e12932.
  • Loh HC, Seah YK, Looi I. The COVID-19 Pandemic and Diet Change. Progress in Microbes and Molecular Biology 2021 ; 4.
  • Liu J, Zheng T, Xia W, Xu S, Li Y. (2022).Cold chain and severe acute respiratory syndrome coronavirus 2 transmission: a review for challenges and coping strategies. Medical Review. 2 : 50–65.
  • Luo Z, Ni K, Zhou Y. (2023). Inactivation of two SARS-CoV-2 virus surrogates by electron beam irradiation on large yellow croaker slices and their packaging surfaces. Food Control. 144 : 109340.
  • Maddali H, Miles CE, Kohn J, O’Carroll DM. (2021). Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chem Bio Chem. 22 : 1176–89.
  • Masotti F, Cattaneo S, Stuknytė M, Pica V, De Noni I. (2022). Transmission routes, preventive measures and control strategies of SARS-CoV-2 in the food factory. Crit Rev Food Sci Nutr. 62 : 4821–31.
  • Mignogna C, Costanzo S, Ghulam A (2022). Impact of Nationwide Lockdowns Resulting from the First Wave of the COVID-19 Pandemic on Food Intake, Eating Behaviors, and Diet Quality: A Systematic Review. Advances in Nutrition. 13 : 388–423.
  • Matthews A. (2020). EU Food System Strengths and Vulnerabilities during Covid-19. EuroChoices. 19 : 4–12.
  • Mortazavi M, Bains A, Afsah-Hejri L, Ehsani R, LiWang PJ.(2022). SARS-CoV-2 pseudotyped virus persists on the surface of multiple produce but can be inactivated with gaseous ozone. Heliyon; 8 : e10280.
  • Wang K, Cong L, Mirosa M, Bai L, Hou Y, Bremer P. (2024). Impact of COVID-19 on Chinese urban consumers’ food safety knowledge and behavior – A comparative study between pre and post pandemic eras. Food Res Int. 194 : 114905.
  • Rzymski P, Kulus M, Jankowski M, et al. COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021 2021 ; 13 : 150.
  • Paparella A, Purgatorio C, Chaves-López C, Rossi C, Serio A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022 ; 11 : 2816.
  • Rabiee N, Fatahi Y, Ahmadi S. (2022). Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of The Total Environment. 825 : 153902.
  • Sağlık Bakanlığı. (2022). Batı Nil Virüsü Enfeksiyonu Vaka Yönetim Rehberi [Internet]. Zoonotik ve Vektörel Hastalıklar Dairesi Başkanlığı. Ankara.
  • Sadak O, Sadak F, Yildirim O. (2022). Electrochemical Biosensing and Deep Learning-Based Approaches in the Diagnosis of COVID-19: A Review. IEEE Access. 10 : 98633–48.
  • Thirumdas R, Sarangapani C, Annapure US. (2015). Cold Plasma: A novel Non-Thermal Technology for Food Processing [Internet]. Vol. 10, Food Biophysics. Springer Science and Business Media, LLC , 20151–11.
  • Trivellin N, Buffolo M, Onelia F. (2021). Inactivating SARS-CoV-2 Using 275 nm UV-C LEDs through a Spherical Irradiation Box: Design, Characterization and Validation. Materials 2021 ; 14 : 2315.
  • Vozzi G, Thomas S V, Dienger-Stambaugh K. (2023).Inactivation of SARS-CoV-2 on Surfaces by Cold-Plasma-Generated Reactive Species. Bioengineering. 10 : 280.
  • Vijayan P P, P.G C, Abraham P. (2022). Nanocoatings: Universal antiviral surface solution against COVID-19. Prog Org Coat 2022 ; 163 : 106670.
  • Vijayan P P, P.G C, Abraham P. (2022). Nanocoatings: Universal antiviral surface solution against COVID-19. Prog Org Coat 2022 ; 163 : 106670.
  • Yao M, Zhang L, Ma J, Zhou L. (2020). On airborne transmission and control of SARS-Cov-2. Science of The Total Environment. 731 : 139178.
  • Zhang H, Chen M, Huang L. (2021). Using cold atmospheric plasma treated-air for COVID-19 disinfection in cold-chain environment. J Phys D Appl Phys. 54 : 40LT01.
  • Zhou C, Lin C, Hu Y. (2022). Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF. LWT. 169 : 114032.
  • Zhang C, Yang Y, Feng Z. (2022). Cold Chain Food and COVID-19 Transmission Risk: From the Perspective of Consumption and Trade. Foods. 11 : 908.
  • Zhang M, King MD. Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms. 11 : 174.
  • Zhang J, Fang X, Mao Y. (2021). Real-time, selective, and low-cost detection of trace level SARS-CoV-2 spike-protein for cold-chain food quarantine. npj Science of Food. 5:1 2021 ; 5 : 1–6.
  • Zhang Y, Juhas M, Kwok CK. (2022). Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol..
  • Zhang X, Yang Y, Cao J, Qi Z, Li G.(2022). Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. Food Front.
  • Zhang W, He Y, Feng Z, Zhang J. (2022). Recent advances of functional nucleic acid-based sensors for point-of-care detection of SARS-CoV-2. Microchimica Acta. 189 : 1–18.
  • Qin H, Qiu H, He ST. (2022). Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage. J Hazard Mater. 430 : 128414.
  • Qian S, Chen Y, Wang X. (2023). CRISPR/Cas12a-Assisted Dual Visualized Detection of SARS-CoV-2 on Frozen Shrimps. Biosensors (Basel). 13 : 138.
  • World Health Organisation. (2024). WHO Director-General declares mpox outbreak a public health emergency of international concern [Internet]. Available from: https://www.who.int/news/item/14-08-2024-who-director-general-declares-mpox-outbreak-a-public-health-emergency-of-international-concern
  • Wang Z, Liang Z, Wei R.(2022). Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging. Virol Sin.37 : 823–30.
  • Wang P, Zhou R, Zhou R. (2022). Cold atmospheric plasma for preventing infection of viruses that use ACE2 for entry. Theranostics. 12 : 2811.
  • WHO. (2024). COVID-19 variants | WHO COVID-19 dashboard [Internet]. Available from: https://data.who.int/dashboards/covid19/variants

Gelecekteki pandemilere karşı gıda güvenliğinde teknolojik stratejiler

Year 2025, Volume: 6 Issue: 2, 7 - 15, 02.04.2025
https://doi.org/10.55549/zbs.1635953

Abstract

Özet
Gıda güvenliğinin korunması, özellikle olası gelecekteki pandemiler ışığında küresel bir endişe haline gelmiştir. Sonuç olarak, gıda güvenliği sorunları giderek daha fazla ortaya çıkmaktadır. Müşteri dinleme stratejileri gibi müşteri deneyimini tasarlamak için stratejiler, ürün ve hizmetlerdeki yeniliklerle sürekli olarak zenginleştirilmelidir. Nanoteknoloji, soğuk plazma ve ozon uygulamaları gibi termal olmayan teknolojiler, gıda güvenliğini sağlamak için düşünülebilir ve uygulanabilir. Bunlar, virüs bulaşmış gıda ambalajı yüzeylerini tedavi etmek için alternatif yöntemlerdir. Elektrokimyasal, optik biyosensörler ve nanomalzemelerin kombinasyonu, nanomalzemelerle entegre biyosensör yaklaşımı, gelecekteki zoonotik virüslerin hızlı tespiti için umut vericidir. Bu gelişmeler, yeni zoonotik virüslerin veya varyantlarının tespitine yol açacaktır.

References

  • Ayşen Ç. D. (2022). COVID-19, Food Safety, Risk Assessment, and Future Approaches in the Food Industry. Handbook of Research on Global Hospitality and Tourism Management. 115-138. Doi: 10.4018/978-1-7998-9148-2.ch006.
  • Ayseli MT, Çetinkaya T, Ayseli YI. (2024) Innovative Food Safety Approaches and Nutraceuticals to Promote Children’s Health on Future Outbreaks with the Reflection of COVID-19. In : Rezaei N, ed. The COVID-19 Aftermath. Advances in Experimental Medicine and Biology. Springer. : 349–69.
  • Arriaga-Lorenzo P, de Jesús Maldonado-Simán E, Ramírez-Valverde R, Martínez-Hernández PA, Tirado-González DN, Saavedra-Jiménez LA. (2023). Cold chain relevance in the food safety of perishable products. Foods and Raw Materials 2022 ; : 116–28.
  • Biasin M, Bianco A, Pareschi G. (2021) UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Scientific Reports. 11:1;1–7.
  • Blondin-Brosseau M, Harlow J, Doctor T, Nasheri N.(2021). Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol. 98 : 103780.
  • Bojórquez-Velázquez E, Llamas-García ML, Elizalde-Contreras JM, Zamora-Briseño JA, Ruiz-May E. (2022). Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses. 14 : 872.
  • Bonfanti A, Vigolo V, Yfantidou G, Gutuleac R.(2023). Customer experience management strategies in upscale restaurants: Lessons from the Covid-19 pandemic. Int J Hosp Manag .109 : 103416.
  • Criscuolo E, Diotti RA, Ferrarese R. (2021). Fast inactivation of SARS-CoV-2 by UV-C and ozone exposure on different materials. Emerg Microbes Infect. 10 : 206–10.
  • Ceylan Z, Ocak E, Uçar Y, Karakus K, Cetinkaya T. (2021). An overview of food safety and COVID-19 infection: nanotechnology and cold plasma applications, immune-boosting suggestions, hygienic precautions. Environmental and Health Management of Novel Coronavirus Disease (COVID-19 ). 325–44.
  • Capelli F, Tappi S, Gritti T. (2021). Decontamination of Food Packages from SARS-CoV-2 RNA with a Cold Plasma-Assisted System. Applied Sciences 2021 ; 11 : 4177. 47. Zhang F, Li Z, Yin L, et al. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. J Am Chem Soc. 143 : 12194–201.
  • Chen Z, Garcia G, Arumugaswami V, Wirz RE. (2020). Cold atmospheric plasma for SARS-CoV-2 inactivation. Physics of Fluids. 32 : 111702.
  • Chaix E, Boni M, Guillier L.(2022). Risk of Monkeypox virus (MPXV) transmission through the handling and consumption of food. Microb Risk Anal. 22 : 100237.
  • Chen R, Kan L, Duan F. (2021). Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Microchimica Acta. 188 : 1–10.
  • Dai H, Tang H, Sun W, Deng S, Han J. (2023). It is time to acknowledge coronavirus transmission via frozen and chilled foods: Undeniable evidence from China and lessons for the world. Science of The Total Environment. 868 : 161388.
  • Dai M, Li H, Yan N. (2020). Long-term survival of salmon-attached SARS-CoV-2 at 4°C as a potential source of transmission in seafood markets. bioRxiv. .
  • Farahmandfar R, Asnaashari M, Hesami B. (2021). Monitoring of new coronavirus (SARS-CoV-2): Origin, transmission, and food preservation methods. J Food Process Preserv . 45 : e15564.
  • Featherstone A.B, Mathijssen A.J.T.M, Brown A, Dass S.C (2024). SARS-CoV-2 Delta variant remains viable in environmental biofilms found in meat packaging plants. PLoS One, 19 : e0304504.
  • Featherstone AB, Brown AC, Dass SC.(2022). Murine Hepatitis Virus, a Biosafety Level 2 Model for SARS-CoV-2, Can Remain Viable on Meat and Meat Packaging Materials for at Least 48 Hours. Tamber S, ed. Microbiol Spectr .
  • Gharibzahedi SMT, Altintas Z. (2024). State-of-the-art sensor technologies for tracking SARS-CoV-2 in contaminated food and packaging: Towards the future techniques of food safety assurance. TrAC Trends in Analytical Chemistry. 170 : 117473.
  • Guo L, Yao Z, Yang L. (2020). Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection. Chemical Engineering Journal. 127742.
  • Guesmi A, Cherif MM, Baaloudj O. (2022). Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. Environmental Science and Pollution Research. 29 : 55321–35.
  • Huang X, Kon E, Han X. (2022). Nanotechnology-based strategies against SARS-CoV-2 variants. Nature Nanotechnology. 1–11.
  • Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. (2023). Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. Biosens Bioelectron X. 13 : 100324.
  • Kulawik P, Kumar Tiwari B. (2019). Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit Rev Food Sci Nutr. 59 : 3199–210.
  • Kulawik P, Rathod NB, Ozogul Y, Ozogul F, Zhang W. (2022). Recent developments in the use of cold plasma, high hydrostatic pressure, and pulsed electric fields on microorganisms and viruses in seafood.
  • Li X, Wang Q, Ding P (2021). Risk factors and on-site simulation of environmental transmission of SARS-CoV-2 in the largest wholesale market of Beijing, China. Science of The Total Environment. 778 : 146040.
  • Lu LC, Quintela I, Lin CH. (2021). A review of epidemic investigation on cold-chain food-mediated SARS-CoV-2 transmission and food safety consideration during COVID-19 pandemic. J Food Saf. 41 : e12932.
  • Loh HC, Seah YK, Looi I. The COVID-19 Pandemic and Diet Change. Progress in Microbes and Molecular Biology 2021 ; 4.
  • Liu J, Zheng T, Xia W, Xu S, Li Y. (2022).Cold chain and severe acute respiratory syndrome coronavirus 2 transmission: a review for challenges and coping strategies. Medical Review. 2 : 50–65.
  • Luo Z, Ni K, Zhou Y. (2023). Inactivation of two SARS-CoV-2 virus surrogates by electron beam irradiation on large yellow croaker slices and their packaging surfaces. Food Control. 144 : 109340.
  • Maddali H, Miles CE, Kohn J, O’Carroll DM. (2021). Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chem Bio Chem. 22 : 1176–89.
  • Masotti F, Cattaneo S, Stuknytė M, Pica V, De Noni I. (2022). Transmission routes, preventive measures and control strategies of SARS-CoV-2 in the food factory. Crit Rev Food Sci Nutr. 62 : 4821–31.
  • Mignogna C, Costanzo S, Ghulam A (2022). Impact of Nationwide Lockdowns Resulting from the First Wave of the COVID-19 Pandemic on Food Intake, Eating Behaviors, and Diet Quality: A Systematic Review. Advances in Nutrition. 13 : 388–423.
  • Matthews A. (2020). EU Food System Strengths and Vulnerabilities during Covid-19. EuroChoices. 19 : 4–12.
  • Mortazavi M, Bains A, Afsah-Hejri L, Ehsani R, LiWang PJ.(2022). SARS-CoV-2 pseudotyped virus persists on the surface of multiple produce but can be inactivated with gaseous ozone. Heliyon; 8 : e10280.
  • Wang K, Cong L, Mirosa M, Bai L, Hou Y, Bremer P. (2024). Impact of COVID-19 on Chinese urban consumers’ food safety knowledge and behavior – A comparative study between pre and post pandemic eras. Food Res Int. 194 : 114905.
  • Rzymski P, Kulus M, Jankowski M, et al. COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021 2021 ; 13 : 150.
  • Paparella A, Purgatorio C, Chaves-López C, Rossi C, Serio A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022 ; 11 : 2816.
  • Rabiee N, Fatahi Y, Ahmadi S. (2022). Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of The Total Environment. 825 : 153902.
  • Sağlık Bakanlığı. (2022). Batı Nil Virüsü Enfeksiyonu Vaka Yönetim Rehberi [Internet]. Zoonotik ve Vektörel Hastalıklar Dairesi Başkanlığı. Ankara.
  • Sadak O, Sadak F, Yildirim O. (2022). Electrochemical Biosensing and Deep Learning-Based Approaches in the Diagnosis of COVID-19: A Review. IEEE Access. 10 : 98633–48.
  • Thirumdas R, Sarangapani C, Annapure US. (2015). Cold Plasma: A novel Non-Thermal Technology for Food Processing [Internet]. Vol. 10, Food Biophysics. Springer Science and Business Media, LLC , 20151–11.
  • Trivellin N, Buffolo M, Onelia F. (2021). Inactivating SARS-CoV-2 Using 275 nm UV-C LEDs through a Spherical Irradiation Box: Design, Characterization and Validation. Materials 2021 ; 14 : 2315.
  • Vozzi G, Thomas S V, Dienger-Stambaugh K. (2023).Inactivation of SARS-CoV-2 on Surfaces by Cold-Plasma-Generated Reactive Species. Bioengineering. 10 : 280.
  • Vijayan P P, P.G C, Abraham P. (2022). Nanocoatings: Universal antiviral surface solution against COVID-19. Prog Org Coat 2022 ; 163 : 106670.
  • Vijayan P P, P.G C, Abraham P. (2022). Nanocoatings: Universal antiviral surface solution against COVID-19. Prog Org Coat 2022 ; 163 : 106670.
  • Yao M, Zhang L, Ma J, Zhou L. (2020). On airborne transmission and control of SARS-Cov-2. Science of The Total Environment. 731 : 139178.
  • Zhang H, Chen M, Huang L. (2021). Using cold atmospheric plasma treated-air for COVID-19 disinfection in cold-chain environment. J Phys D Appl Phys. 54 : 40LT01.
  • Zhou C, Lin C, Hu Y. (2022). Sensitive fluorescence biosensor for SARS-CoV-2 nucleocapsid protein detection in cold-chain food products based on DNA circuit and g-CNQDs@Zn-MOF. LWT. 169 : 114032.
  • Zhang C, Yang Y, Feng Z. (2022). Cold Chain Food and COVID-19 Transmission Risk: From the Perspective of Consumption and Trade. Foods. 11 : 908.
  • Zhang M, King MD. Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms. 11 : 174.
  • Zhang J, Fang X, Mao Y. (2021). Real-time, selective, and low-cost detection of trace level SARS-CoV-2 spike-protein for cold-chain food quarantine. npj Science of Food. 5:1 2021 ; 5 : 1–6.
  • Zhang Y, Juhas M, Kwok CK. (2022). Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol..
  • Zhang X, Yang Y, Cao J, Qi Z, Li G.(2022). Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. Food Front.
  • Zhang W, He Y, Feng Z, Zhang J. (2022). Recent advances of functional nucleic acid-based sensors for point-of-care detection of SARS-CoV-2. Microchimica Acta. 189 : 1–18.
  • Qin H, Qiu H, He ST. (2022). Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage. J Hazard Mater. 430 : 128414.
  • Qian S, Chen Y, Wang X. (2023). CRISPR/Cas12a-Assisted Dual Visualized Detection of SARS-CoV-2 on Frozen Shrimps. Biosensors (Basel). 13 : 138.
  • World Health Organisation. (2024). WHO Director-General declares mpox outbreak a public health emergency of international concern [Internet]. Available from: https://www.who.int/news/item/14-08-2024-who-director-general-declares-mpox-outbreak-a-public-health-emergency-of-international-concern
  • Wang Z, Liang Z, Wei R.(2022). Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging. Virol Sin.37 : 823–30.
  • Wang P, Zhou R, Zhou R. (2022). Cold atmospheric plasma for preventing infection of viruses that use ACE2 for entry. Theranostics. 12 : 2811.
  • WHO. (2024). COVID-19 variants | WHO COVID-19 dashboard [Internet]. Available from: https://data.who.int/dashboards/covid19/variants
There are 61 citations in total.

Details

Primary Language English
Subjects Virology
Journal Section Review
Authors

Sibel Bayıl 0000-0003-0254-6915

Turgay Çetinkaya 0000-0003-2962-1241

Mehmet Özaslan

Early Pub Date March 29, 2025
Publication Date April 2, 2025
Submission Date February 10, 2025
Acceptance Date February 23, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

EndNote Bayıl S, Çetinkaya T, Özaslan M (April 1, 2025) Technological Innovations Against Future Pandemics with Novel Strategies for Food Safety. Zeugma Biological Science 6 2 7–15.