Research Article
BibTex RIS Cite

Isolation of ascorbate peroxidase (APX) gene in lentil (Lens culinaris Medik.) and expression analysis under drought stress conditions

Year 2022, , 439 - 447, 30.09.2022
https://doi.org/10.20289/zfdergi.1007041

Abstract

Objective: The objective of this study was to isolate partial cDNA that belongs to the ascorbate peroxidase (APX) gene of lentil (Lens culinaris Medik.) and to express LcAPX gene in lentil seedlings under drought stress conditions.
Material and Methods: To identify the relationships between drought stress and LcAPX gene expression, lentil seedlings grown for 2 weeks were subjected to drought stress through not irrigating for 6, 13, and 20 days. Effects of drought stress were determined by measuring the stem relative water content (RWC). Gene expression changes in lentil seedlings were determined with real-time RT-qPCR.
Results: The LcAPX gene expression levels of both drought-tolerant Firat-87 and drought-sensitive Ozbek cultivars varied with the severity of drought stress. The gene expression of LcAPX reached the highest level in Firat-87 cultivar on the 6th day, whereas a significant increase was observed only on the 20th day of the Ozbek cultivar, and this increase was relatively low as compared to the Fırat-87 cultivar.
Conclusion: From the study conducted, it was concluded that time-dependent changes of the expression of LcAPX gene indicates that LcAPX gene had a highly specific gene expression profile and complex regulation in lentil drought response.

Supporting Institution

Erciyes Üniversitesi

Project Number

6684

Thanks

This study was supported by Erciyes University, Scientific Research Projects Unit (Project no: 6684). Thanks are extended to Betül-Ziya Eren Genome and Stem Cell Center of Erciyes University for their supports provided throughout the experiments.

References

  • Akbudak, M.A., E. Filiz, R. Vatansever & K. Kontbay, 2018. Genome-wide identification and expression profiling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). Journal of Plant Growth Regulation, 37 (3): 925-936.
  • Aksoy, E., 2008. Effect of Drought and Salt Stresses on The Gene Expression Levels of Antioxidant Enzymes in Lentil (Lens culinaris M.) Seedlings. University of Middle East Technical, (Unpublished) Master Thesis, Ankara, 207 pp.
  • Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9 (3): 208-218.
  • Aslan, H., 2014. Effect of Chemical Foliar Application to Reduce Harvest Losses due to Pod Drop and Shatter in Red Lentil. Harran University, (Unpublished) Master Thesis, Şanlıurfa, 41 pp.
  • Bahl, P.N., S. Lal & B.M. Sharma, 1993. “An overview of the production and problems in southeast Asia”. In: Proceedings of the seminar on lentils in South Asia. (Eds. W. Erskine & M.C. Saxena). ICARDA. Aleppo, Syria 236 pp.
  • Bakır, M., 2019. Determination of Lentil (Lens culinaris M.) DEHYDRATION RESPONSIVE ELEMENT-BINDING2A (DREB2A) Gene Expression under Drought Stress Conditions. Journal of Agriculture Faculty of Ege University, 56 (2): 181-185.
  • Barnabás, B., K. Jäger, & A. Fehér, 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31 (1): 11-38.
  • Bartwal, A. & S. Arora, 2017. Drought stress-induced enzyme activity and mdar and apx gene expression in tolerant and susceptible genotypes of Eleusine coracana (L.). In Vitro Cellular & Developmental Biology-Plant, 53 (1): 41-49.
  • Cao, S., X.H. Du, L.H. Li, Y.D. Liu, L. Zhang, X. Pan, Y. Li, H. Li & H. Lu, 2017. Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russian Journal of Plant Physiology, 64 (2): 224-234.
  • Ceritoğlu, M., 2019. The Effect of Vermicompost Applied at Different Sowing Dates on Yield and Yield Components in Lentil (Lens Culinaris Medik.). Siirt University, (Unpublished) Master Thesis, Siirt,102 pp.
  • Çevik, S. & S. Ünyayar, 2015. The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. Journal of Natural & Applied Sciences, 19 (1): 91-97.
  • Chen, G.X. & K., Asada, 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant and Cell Physiology, 30 (7): 987-998.
  • Chugh, V., N. Kaur, M.S. Grewal & A.K. Gupta, 2013. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian Journal of Biochemistry & Biophysics, 50: 150.
  • D'Arcy-Lameta, A., R. Ferrari-Iliou, D. Contour-Ansel, A.T. Pham-Thi & Y. Zuily-Fodil, 2006. Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Annals of Botany, 97 (1): 133-140.
  • Dąbrowska, G., A. Kata, A. Goc, M. Szechyńska-Hebda & E. Skrzypek, 2007. Characteristics of the plant ascorbate peroxidase family. Acta Biologica Cracoviensia Series Botanica, 49 (1): 7-17.
  • Elkoyunu, R., 2013. Effects of Different Chlorine Salts on Germination and Seedling Growth in Lentil (Lens esculanta Moench). Süleyman Demirel University, (Unpublished) Master Thesis, Isparta, 112 pp.
  • FAOSTAT, 2018. Food and Agriculture Organization (FAO) Stats. (Web page: http: //www.fao.org/faostat/en/#data/QC/visualize) (Date accessed: 03 March 2020).
  • Ghaderi, N., A.R. Talaie, A. Ebadi & H. Lessani, 2011. The physiological response of three Iranian grape cultivars to progressive drought stress. Journal of Agricultural and Technology, 13 (4): 601-610.
  • Gökçay, D., 2012. Physiological and Biochemical Screeing of Different Turkish Lentil (Lens culinaris M.) Cultivars under Drought Stress Condition. Master Thesis, Middle East Tecnical University, (Unpublished) Master Thesis, Ankara, 80 pp.
  • Güneş, A., S. Adak, A. İnal, M. Alpaslan, F. Eraslan, N. Çiçek & B. Soylu, 2006. Oxidatie Stress Depending on Drought and Determination Physiological Tolerance Mechanism in Chickpea and Lentil Cultivars. Scientific Research Project Final Report, 135 pp
  • Harb, A., D. Awad & N. Samarah, 2015. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 10 (1): 109-116.
  • Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H.J. Al-Juburi, R. Somasundaram & R. Panneerselvam, 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11 (1): 100-105.
  • Jiang, Y., E. Watkins, S. Liu, X. Yu & N. Luo, 2010. Antioxidative responses and candidate gene expression in prairie junegrass under drought stress. Journal of the American Society for Horticultural Science, 135 (4): 303-309.
  • Joshi, R. & R. Karan, 2013. “Physiological, Biochemical and Molecular Mechanisms of Drought Tolerance in Plants, 318-338”. In: Molecular Approaches in Plant Abiotic Stress, (Eds. R. K. Gaur & P. Sharma) Boca Raton, FL: CRC Press 430 pp.
  • Kabay, T. & S. Şensoy, 2016. Enzyme, Chlorophyl and Ion Changes in Some Common Bean Genotypes by Drought Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 26 (3): 380-395.
  • Kalefetoğlu, T. & Y. Ekmekci, 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723-740.
  • Kausar, R., Z. Hossain, T. Makino & S. Komatsu, 2012. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39 (12): 10573-10579.
  • Köse, Ö.D.E., Y.M. Kardeş, M. Karaer & Z. Mut, 2019. Effects of Different Priming Techniques on Germination and Seedling Growth of Green Lentil (Lens culinaris Medik.) Cultivars. Bilecik Seyh Edebali University Journal of Science, 6: 247-255.
  • Laxa, M., M. Liebthal, W. Telman, K. Chibani & K.J. Dietz, 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants, 8 (4): 94.
  • Li, Y.J., R.L. Hai, X.H. Du, X.N. Jiang & H. Lu, 2009. Over‐expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breeding, 128 (4): 404-410.
  • Livak, K.J. & T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25 (4): 402-408.
  • Marchin, R.M., A. Ossola, M.R. Leishman & D.S. Ellsworth, 2020. A simple method for simulating drought effects on plants. Frontiers in Plant Science, 10: 1715.
  • Mittler, R. & B.A. Zilinskas, 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. Journal of Biological Chemistry, 267 (30): 21802-21807.
  • Mittler, R. & B.A. Zilinskas, 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. The Plant Journal, 5 (3): 397-405.
  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7 (9): 405-410.
  • Miyake, C. & K. Asada, 1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology, 33 (5): 541-553.
  • Morgil, H., M. Tardu, G. Cevahir & I.H. Kavakli, 2019. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Functional & Integrative Genomics, 19 (5): 715-727.
  • Morita, S., H. Kaminaka, T. Masumura & K. Tanaka, 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant and Cell Physiology, 40 (4): 417-422.
  • Muehlbauer, F.J., 1992. Use of introduced germplasm in cool‐season food legume cultivar development. Use of Plant Introductions in Cultivar Development, Part 2, 20: 49-73.
  • Öktem, H.A., F. Eyidoðan, D. Demirba, A.T. Bayraç, M.T. Öz, E. Özgür, F. Selçuk & M. Yücel, 2008. Antioxidant responses of lentil to cold and drought stress. Journal of Plant Biochemistry and Biotechnology, 17 (1): 15-21.
  • Örs, S. & M. Ekinci, 2015. Drought stress and plant physiology. Derim, 32 (2): 237-250.
  • Oweis, T., A. Hachum & M. Pala, 2004. Lentil production under supplemental irrigation in a Mediterranean environment. Agricultural Water Management, 68 (3): 251-265.
  • Pala, F., H. Mennan & A. Demir, 2018. Determination of the Weed Species, Frequency and Density in Lentil Fields in Diyarbakır Province. Turkish Journal of Weed Science, 21 (1): 33-42.
  • Panchuk, I.I., R.A. Volkov & F. Schöffl, 2002. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology, 129 (2): 838-853.
  • Qados, A.M.A., 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10 (1): 7-15.
  • Rahimi, M.H., S. Houshmand, M. Khodambashi, B. Shiran & S. Mohammady, 2016. Effect of drought stress on agro-morphological traits of lentil (Lens culinaris Medik.) recombinant inbred lines. Bangladesh Journal of Agricultural Research, 41 (2): 207-219.
  • Rose, T.M., E.R. Schultz, J.G. Henikoff, S. Pietrokovski, C.M. McCallum & S. Henikoff, 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research, 26 (7): 1628-1635.
  • Saha, G.C. & G.J. Vandemark, 2013. Stability of expression of reference genes among different lentil (Lens culinaris) genotypes subjected to cold stress, white mold disease, and Aphanomyces root rot. Plant Molecular Biology Reporter, 31 (5): 1109-1115.
  • Samarah, N.H., A.M. Alqudah, J.A. Amayreh & G.M. McAndrews, 2009. The effect of late‐terminal drought stress on yield components of four barley cultivars. Journal of Agronomy and Crop Science, 195 (6): 427-441.
  • Sato, Y., T. Murakami, H. Funatsuki, S. Matsuba, H. Saruyama & M. Tanida, 2001. Heat shock‐mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 52 (354): 145-151.
  • Sečenji, M., E. Hideg, A. Bebes & J. Györgyey, 2010. Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29 (1): 37-50.
  • Sehgal, A., K. Sita, J. Kumar, S. Kumar, S. Singh, K.H. Siddique & H. Nayyar, 2017. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8: 1776.
  • Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta & K. Yoshimura, 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53 (372): 1305-1319.
  • Singh, D., C.K. Singh, J. Taunk, R.S.S Tomar, A.K. Chaturvedi, K. Gaikwad & M. Pal, 2017. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics, 18 (1): 1-20.
  • Tekin, Y., 2019. Investigation on Yield and Adaptation Properties of Different Lentil Cultivars in Batman Ecological Conditions. Siirt University, (Unpublished) Master Thesis, Siirt, 66 pp.
  • Terzi, R., A. Sağlam, N. Kutlu, H. Nar & A. Kadioğlu, 2010. Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turkish Journal of Botany, 34 (1): 1-10.
  • Tullu, A., I. Kusmenoglu, K.E. McPhee & F.J. Muehlbauer, 2001. Characterization of core collection of lentil germplasm for phenology, morphology, seed and straw yields. Genetic Resources and Crop Evolution, 48 (2): 143-152.
  • Ünyayar, S. & F.Ö. Çekiç, 2006. Changes in antioxidative enzymes of young and mature leaves of tomato seedlings under drought stress. Turkish Journal of Biology, 29 (4): 211-216.
  • Valentovic, P., M. Luxova, L. Kolarovic & O. Gasparikova, 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52 (4): 184.
  • Webb, R.P. & R.D. Allen, 1995. Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase. Plant Physiology, 108 (3): 1325.
  • Xu, L., L. Han & B. Huang, 2011. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 136 (4): 247-255.
  • Zhang, Z., Q. Zhang, J. Wu, X. Zheng, S. Zheng, X. Sun, Q. Qiu & T. Lu, 2013. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PloS One, 8 (2): e57472.

Isolation of ascorbate peroxidase (APX) gene in lentil (Lens culinaris Medik.) and expression analysis under drought stress conditions

Year 2022, , 439 - 447, 30.09.2022
https://doi.org/10.20289/zfdergi.1007041

Abstract

Amaç: Bu çalışmada, mercimekte (Lens culinaris Medik.) askorbat peroksidaz (APX) geninin partial cDNA klonu izole edilmiş ve LcAPX geninin kuraklık stresi koşullarında mercimek fidelerinde değişen gen ifadesi seviyesi belirlenmiştir.
Materyal ve Yöntem: Kuraklık stresi ve LcAPX gen ifadesi arasındaki ilişkiyi anlamak için, 2 hafta süre ile yetiştirilen mercimek fidelerine 6, 13 ve 20 gün süre ile sulamama şeklinde kuraklık stresi uygulanmıştır. Kuraklık stresinin etkileri, sap nispi nem içeriği (RWC) ölçülerek belirlenmiştir. Mercimek fidelerinde meydana gelen gen ifadesi değişimleri eş zamanlı kantitatif PCR (Real-time qPCR) ile belirlenmiştir.
Araştırma Bulguları: Hem kuraklığa dayanıklı Fırat-87 hem de kuraklığa duyarlı Özbek çeşitlerinin LcAPX gen ekspresyon seviyeleri, kuraklık stresinin şiddetine göre değişiklik göstermiştir. LcAPX gen ekspresyonu Fırat-87 çeşidinde 6. günde en yüksek seviyeye ulaşırken, Özbek çeşidinin sadece 20. gününde önemli bir artış gözlenmiş ve bu artış Fırat-87 çeşidine göre nispeten düşük kalmıştır.
Sonuç: Sonuç olarak, LcAPX geninin ekspresyonunun gün bazında değişmesi, LcAPX geninin mercimeğin kuraklığa tepkisinde oldukça spesifik bir gen ekspresyon profiline ve karmaşık bir regülasyona sahip olduğunu göstermektedir.

Project Number

6684

References

  • Akbudak, M.A., E. Filiz, R. Vatansever & K. Kontbay, 2018. Genome-wide identification and expression profiling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). Journal of Plant Growth Regulation, 37 (3): 925-936.
  • Aksoy, E., 2008. Effect of Drought and Salt Stresses on The Gene Expression Levels of Antioxidant Enzymes in Lentil (Lens culinaris M.) Seedlings. University of Middle East Technical, (Unpublished) Master Thesis, Ankara, 207 pp.
  • Arumuganathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9 (3): 208-218.
  • Aslan, H., 2014. Effect of Chemical Foliar Application to Reduce Harvest Losses due to Pod Drop and Shatter in Red Lentil. Harran University, (Unpublished) Master Thesis, Şanlıurfa, 41 pp.
  • Bahl, P.N., S. Lal & B.M. Sharma, 1993. “An overview of the production and problems in southeast Asia”. In: Proceedings of the seminar on lentils in South Asia. (Eds. W. Erskine & M.C. Saxena). ICARDA. Aleppo, Syria 236 pp.
  • Bakır, M., 2019. Determination of Lentil (Lens culinaris M.) DEHYDRATION RESPONSIVE ELEMENT-BINDING2A (DREB2A) Gene Expression under Drought Stress Conditions. Journal of Agriculture Faculty of Ege University, 56 (2): 181-185.
  • Barnabás, B., K. Jäger, & A. Fehér, 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31 (1): 11-38.
  • Bartwal, A. & S. Arora, 2017. Drought stress-induced enzyme activity and mdar and apx gene expression in tolerant and susceptible genotypes of Eleusine coracana (L.). In Vitro Cellular & Developmental Biology-Plant, 53 (1): 41-49.
  • Cao, S., X.H. Du, L.H. Li, Y.D. Liu, L. Zhang, X. Pan, Y. Li, H. Li & H. Lu, 2017. Overexpression of Populus tomentosa cytosolic ascorbate peroxidase enhances abiotic stress tolerance in tobacco plants. Russian Journal of Plant Physiology, 64 (2): 224-234.
  • Ceritoğlu, M., 2019. The Effect of Vermicompost Applied at Different Sowing Dates on Yield and Yield Components in Lentil (Lens Culinaris Medik.). Siirt University, (Unpublished) Master Thesis, Siirt,102 pp.
  • Çevik, S. & S. Ünyayar, 2015. The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. Journal of Natural & Applied Sciences, 19 (1): 91-97.
  • Chen, G.X. & K., Asada, 1989. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant and Cell Physiology, 30 (7): 987-998.
  • Chugh, V., N. Kaur, M.S. Grewal & A.K. Gupta, 2013. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Indian Journal of Biochemistry & Biophysics, 50: 150.
  • D'Arcy-Lameta, A., R. Ferrari-Iliou, D. Contour-Ansel, A.T. Pham-Thi & Y. Zuily-Fodil, 2006. Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Annals of Botany, 97 (1): 133-140.
  • Dąbrowska, G., A. Kata, A. Goc, M. Szechyńska-Hebda & E. Skrzypek, 2007. Characteristics of the plant ascorbate peroxidase family. Acta Biologica Cracoviensia Series Botanica, 49 (1): 7-17.
  • Elkoyunu, R., 2013. Effects of Different Chlorine Salts on Germination and Seedling Growth in Lentil (Lens esculanta Moench). Süleyman Demirel University, (Unpublished) Master Thesis, Isparta, 112 pp.
  • FAOSTAT, 2018. Food and Agriculture Organization (FAO) Stats. (Web page: http: //www.fao.org/faostat/en/#data/QC/visualize) (Date accessed: 03 March 2020).
  • Ghaderi, N., A.R. Talaie, A. Ebadi & H. Lessani, 2011. The physiological response of three Iranian grape cultivars to progressive drought stress. Journal of Agricultural and Technology, 13 (4): 601-610.
  • Gökçay, D., 2012. Physiological and Biochemical Screeing of Different Turkish Lentil (Lens culinaris M.) Cultivars under Drought Stress Condition. Master Thesis, Middle East Tecnical University, (Unpublished) Master Thesis, Ankara, 80 pp.
  • Güneş, A., S. Adak, A. İnal, M. Alpaslan, F. Eraslan, N. Çiçek & B. Soylu, 2006. Oxidatie Stress Depending on Drought and Determination Physiological Tolerance Mechanism in Chickpea and Lentil Cultivars. Scientific Research Project Final Report, 135 pp
  • Harb, A., D. Awad & N. Samarah, 2015. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions, 10 (1): 109-116.
  • Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, H.J. Al-Juburi, R. Somasundaram & R. Panneerselvam, 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11 (1): 100-105.
  • Jiang, Y., E. Watkins, S. Liu, X. Yu & N. Luo, 2010. Antioxidative responses and candidate gene expression in prairie junegrass under drought stress. Journal of the American Society for Horticultural Science, 135 (4): 303-309.
  • Joshi, R. & R. Karan, 2013. “Physiological, Biochemical and Molecular Mechanisms of Drought Tolerance in Plants, 318-338”. In: Molecular Approaches in Plant Abiotic Stress, (Eds. R. K. Gaur & P. Sharma) Boca Raton, FL: CRC Press 430 pp.
  • Kabay, T. & S. Şensoy, 2016. Enzyme, Chlorophyl and Ion Changes in Some Common Bean Genotypes by Drought Stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 26 (3): 380-395.
  • Kalefetoğlu, T. & Y. Ekmekci, 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18 (4): 723-740.
  • Kausar, R., Z. Hossain, T. Makino & S. Komatsu, 2012. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses. Molecular Biology Reports, 39 (12): 10573-10579.
  • Köse, Ö.D.E., Y.M. Kardeş, M. Karaer & Z. Mut, 2019. Effects of Different Priming Techniques on Germination and Seedling Growth of Green Lentil (Lens culinaris Medik.) Cultivars. Bilecik Seyh Edebali University Journal of Science, 6: 247-255.
  • Laxa, M., M. Liebthal, W. Telman, K. Chibani & K.J. Dietz, 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants, 8 (4): 94.
  • Li, Y.J., R.L. Hai, X.H. Du, X.N. Jiang & H. Lu, 2009. Over‐expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breeding, 128 (4): 404-410.
  • Livak, K.J. & T.D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25 (4): 402-408.
  • Marchin, R.M., A. Ossola, M.R. Leishman & D.S. Ellsworth, 2020. A simple method for simulating drought effects on plants. Frontiers in Plant Science, 10: 1715.
  • Mittler, R. & B.A. Zilinskas, 1992. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. Journal of Biological Chemistry, 267 (30): 21802-21807.
  • Mittler, R. & B.A. Zilinskas, 1994. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. The Plant Journal, 5 (3): 397-405.
  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7 (9): 405-410.
  • Miyake, C. & K. Asada, 1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology, 33 (5): 541-553.
  • Morgil, H., M. Tardu, G. Cevahir & I.H. Kavakli, 2019. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short-and long-term water deficits. Functional & Integrative Genomics, 19 (5): 715-727.
  • Morita, S., H. Kaminaka, T. Masumura & K. Tanaka, 1999. Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant and Cell Physiology, 40 (4): 417-422.
  • Muehlbauer, F.J., 1992. Use of introduced germplasm in cool‐season food legume cultivar development. Use of Plant Introductions in Cultivar Development, Part 2, 20: 49-73.
  • Öktem, H.A., F. Eyidoðan, D. Demirba, A.T. Bayraç, M.T. Öz, E. Özgür, F. Selçuk & M. Yücel, 2008. Antioxidant responses of lentil to cold and drought stress. Journal of Plant Biochemistry and Biotechnology, 17 (1): 15-21.
  • Örs, S. & M. Ekinci, 2015. Drought stress and plant physiology. Derim, 32 (2): 237-250.
  • Oweis, T., A. Hachum & M. Pala, 2004. Lentil production under supplemental irrigation in a Mediterranean environment. Agricultural Water Management, 68 (3): 251-265.
  • Pala, F., H. Mennan & A. Demir, 2018. Determination of the Weed Species, Frequency and Density in Lentil Fields in Diyarbakır Province. Turkish Journal of Weed Science, 21 (1): 33-42.
  • Panchuk, I.I., R.A. Volkov & F. Schöffl, 2002. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology, 129 (2): 838-853.
  • Qados, A.M.A., 2011. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10 (1): 7-15.
  • Rahimi, M.H., S. Houshmand, M. Khodambashi, B. Shiran & S. Mohammady, 2016. Effect of drought stress on agro-morphological traits of lentil (Lens culinaris Medik.) recombinant inbred lines. Bangladesh Journal of Agricultural Research, 41 (2): 207-219.
  • Rose, T.M., E.R. Schultz, J.G. Henikoff, S. Pietrokovski, C.M. McCallum & S. Henikoff, 1998. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research, 26 (7): 1628-1635.
  • Saha, G.C. & G.J. Vandemark, 2013. Stability of expression of reference genes among different lentil (Lens culinaris) genotypes subjected to cold stress, white mold disease, and Aphanomyces root rot. Plant Molecular Biology Reporter, 31 (5): 1109-1115.
  • Samarah, N.H., A.M. Alqudah, J.A. Amayreh & G.M. McAndrews, 2009. The effect of late‐terminal drought stress on yield components of four barley cultivars. Journal of Agronomy and Crop Science, 195 (6): 427-441.
  • Sato, Y., T. Murakami, H. Funatsuki, S. Matsuba, H. Saruyama & M. Tanida, 2001. Heat shock‐mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 52 (354): 145-151.
  • Sečenji, M., E. Hideg, A. Bebes & J. Györgyey, 2010. Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Reports, 29 (1): 37-50.
  • Sehgal, A., K. Sita, J. Kumar, S. Kumar, S. Singh, K.H. Siddique & H. Nayyar, 2017. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in Plant Science, 8: 1776.
  • Shigeoka, S., T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda, Y. Yabuta & K. Yoshimura, 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53 (372): 1305-1319.
  • Singh, D., C.K. Singh, J. Taunk, R.S.S Tomar, A.K. Chaturvedi, K. Gaikwad & M. Pal, 2017. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics, 18 (1): 1-20.
  • Tekin, Y., 2019. Investigation on Yield and Adaptation Properties of Different Lentil Cultivars in Batman Ecological Conditions. Siirt University, (Unpublished) Master Thesis, Siirt, 66 pp.
  • Terzi, R., A. Sağlam, N. Kutlu, H. Nar & A. Kadioğlu, 2010. Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turkish Journal of Botany, 34 (1): 1-10.
  • Tullu, A., I. Kusmenoglu, K.E. McPhee & F.J. Muehlbauer, 2001. Characterization of core collection of lentil germplasm for phenology, morphology, seed and straw yields. Genetic Resources and Crop Evolution, 48 (2): 143-152.
  • Ünyayar, S. & F.Ö. Çekiç, 2006. Changes in antioxidative enzymes of young and mature leaves of tomato seedlings under drought stress. Turkish Journal of Biology, 29 (4): 211-216.
  • Valentovic, P., M. Luxova, L. Kolarovic & O. Gasparikova, 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52 (4): 184.
  • Webb, R.P. & R.D. Allen, 1995. Isolation and characterization of a cDNA for spinach cytosolic ascorbate peroxidase. Plant Physiology, 108 (3): 1325.
  • Xu, L., L. Han & B. Huang, 2011. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery. Journal of the American Society for Horticultural Science, 136 (4): 247-255.
  • Zhang, Z., Q. Zhang, J. Wu, X. Zheng, S. Zheng, X. Sun, Q. Qiu & T. Lu, 2013. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PloS One, 8 (2): e57472.
There are 62 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Melike Bakır 0000-0003-3465-1453

Cebrail Yıldırım 0000-0001-6287-6110

Project Number 6684
Publication Date September 30, 2022
Submission Date October 19, 2021
Acceptance Date June 6, 2022
Published in Issue Year 2022

Cite

APA Bakır, M., & Yıldırım, C. (2022). Isolation of ascorbate peroxidase (APX) gene in lentil (Lens culinaris Medik.) and expression analysis under drought stress conditions. Journal of Agriculture Faculty of Ege University, 59(3), 439-447. https://doi.org/10.20289/zfdergi.1007041

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.