Domates genotiplerinin kuraklık stresine tolerans açısından tohum çimlendirme ve vegetatif gelişme aşamalarında hızlı taranmasına uygun testlerin optimizasyonu
Year 2022,
, 697 - 707, 31.12.2022
Hakan Altunlu
,
Gökçe Aydöner Çoban
,
Ayşe Gül
Abstract
Amaç: Bu çalışma, domates genetik kaynaklarının kuraklık stresine karşı hızlı taranması için PEG-6000'in neden olduğu kuraklık stresinin uygunluğunu belirlemek amacıyla yapılmıştır.
Materyal ve Yöntem: Çalışmada, kurağa toleransı yüksek (M28) ve düşük (Alyans) olduğu bilinen iki çeşit test edilmiştir. Çimlendirme testinde iki farklı PEG konsantrasyonu (%4 ve %6) denenmiştir. Fide aşamasındaki test su kültürü tekniği ile gerçekleştirilmiştir. Denemede (1) kökleri yetiştirme ortamından temizlenmiş çıplak köklü veya (2) kökleri yetiştirme ortamından temizlenmemiş fideler kullanılmıştır. Su kültürüne alınan fidelere 7 gün sonra kuraklık stresi (Ψs= -1.0 MPa) kademeli olarak (-0.25, -0.5 -0.75 ve -1.0 MPa) her 48 saatte bir artırılarak uygulanmıştır.
Araştırma Bulguları: Tohum çimlenme testinde, vigor indeksinde kuraklık stresi altında kontrole kıyasla meydana gelen azalma, M28 çeşidinde daha az olmuştur. Su kültüründe, kökleri yetiştirme ortamından temizlenmemiş fideler kullanılması durumunda stres belirtileri beklenen sürede ortaya çıkmamıştır. Kuraklık stresi altında bitki gelişimi, klorofil a ve b, karotenoid içeriği ve yaprak oransal nem içeriğinde meydana gelen azalış ile prolin içeriğinde meydana gelen artış M28 çeşidinde daha düşük olmuştur.
Sonuç: Domates genetik kaynaklarının kuraklık stresine tolerans açısından taranmasında; tohum çimlendirme aşamasında %4’lük PEG-6000, vegetatif gelişme aşamasında durgun su kültüründe PEG-6000 ile Ψs= -1.0 MPa osmotik stres yaratılmasının uygun olduğu sonucuna varılmıştır.
Supporting Institution
Tübitak
Project Number
117O126 numaralı proje
Thanks
Bu çalışma TÜBİTAK tarafından desteklenen 117O126 numaralı proje çerçevesinde yürütülmüştür.
References
- Aazami, M.A., M. Torabi & E. Jalili, 2010. In vitro response of promising tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology, 9 (26): 4014-4017.
- Aghaie, P., S.A.H. Tafreshi, M.A. Ebrahimi & M. Haerinasab, 2018. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Scientia Horticulturae, 232: 1-12.
- Akgül, G., 2019. Biber Fidelerinde Kuraklık ve Tuz Stresinin Bitki Gelişimi, Besin Maddesi İçeriği, Bazı Biyokimyasal ve Fizyolojik Özellikleri Üzerine Etkisi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Erzurum, Türkiye, 62 s.
- Altunlu, H., 2011. Aşılamanın Domateste Kuraklık Stresi Üzerine Etkileri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Doktora Tezi, İzmir, Türkiye, 206 s.
- Aras, S. & H. Keles, 2019. Responses of apple plants to drought stress. Journal of Agricultural Studies, Macrothink Institute, 7 (3): 153-159.
- Basha, P.O., G. Sudarsanam, M.M. Sudhana Reddy & N.S. Sankar, 2015. Effect of PEG induced water stress on germination and seedling development of tomato germplasm. International Journal of Recent Scientific Research, 6 (5): 4044-4049.
- Bates, L.S., R.P. Waldren & I.D. Teare, 1973. Rapid determination of free proline for water stress studies, Plant and Soil, 39: 205-207.
- Bhusal, N., S.G. Han & T.M. Yoon, 2019. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus×domestica Borkh.). Scientia Horticulturae, 246: 535-543.
- Bohalima, A.A.O., 2017. Tuz ve Kuraklık Stresinin Domates Gelişimi Üzerine Etkileri. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Bölümü, (Basılmamış) Yüksek Lisans Tezi, Kastamonu, Türkiye, 91 s.
- Buhroy, S., T. Arumugam, N. Manivannan, P. Irene Vethamoni & P. Jeyakumar, 2017. Correlation and path analysis of drought tolerance traits on fruit yield in tomato (Solanum lycopersicum L.) under drought stress condition. Chemical Science Review and Letter, 6 (23): 1670-1676.
- Carvalho, M., M. Matos, I. Castro, E. Monteiro, E. Rosa, T. Lino-Neto & V. Carnide, 2019. Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247: 107-115.
- Caşka Kılıçaslan, S., 2019. Kuraklık Stresinin Fasulyede Bitki Gelişimi ile Bazı Fizyolojik ve Biyokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Erzurum, Türkiye, 46 s.
- Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai & C. Cantini, 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) varieties in a genotype-dependent manner. Plants (Basel, Switzerland), 8 (9): 336.
- Çelik, Ö., A. Ayan & Ç. Atak, 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Botanical Studies, 58 (1): 32.
- Esan, V.I., T.A. Ayanbamiji, J.O. Adeyemo & S. Oluwafemi, 2018. Effect of drought on seed germination and early seedling of tomato genotypes using Polyethylene Glycol 6000. International Journal of Sciences, 7: 36-43.
- George, S., N. Minhas, S. Jatoi, S. Siddiqui & A. Ghafoor, 2015. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum). Pakistan Journal of Botany, 47 (3): 835-844.
- George, S., S.A. Jatoi & U. Sıddqui, 2013. Genotypic differences against peg simulated drought stress in tomato. Pakistan Journal of Botany, 45 (5): 1551-1556.
- Ghebremariam, K.M., Y. Liang, C. Li, Y. Li & L. Qin 2013. Screening of tomato inbred-lines for drought tolerance at germination and seedling stage. Journal of Agricultural Science, 5 (11): 93-101.
- Ghorbanli, M., M. Gafarabad, T. Amirkian & B.A. Mamaghani, 2012. Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3 (2): 651-658.
- Guellim, A., M. Catterou, O. Chabrerie, T. Tetu, B. Hirel, F. Dubois.& T. Kichey, 2019. Identification of phenotypic and physiological markers of salt stress tolerance in durum wheat (Triticum durum Desf.) through Integrated Analyses. Agronomy, 9 (12): 844.
- Gül, A., 2019. Topraksız Tarım. Meta Basım, 146 s.
- Hamann, F.A., S. Czaja, M. Hunsche, G. Noga & A. Fiebig, 2018. Monitoring physiological and biochemical responses of two apple cultivars to water supaply regimes with non-destructive fluorescence sensors. Scientia Horticulturae, 242: 51-61.
- Hong-Bo, S., C. Xiao-Yan, C. Li-Ye, Z. Xi-Ning, W. Gang, Y. Yong-Bing, Z. Chang-Xing & H. Zan-Min, 2006. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B Biointerfaces, 53 (1): 113-119.
- ISTA, 1993. International Rules for Seed Testing. Rules for Seed Science and Technology.
Jokanović, M.B. & J. Zdravković, 2015. Germination of tomatoes under PEG-induced drought stress, Ratarstvo i povrtarstvo, 52 (3): 108-111.
- Kıran, S., Ş. Kuşvuran, F. Özkay & F.Ş. Ellialtıoğlu, 2015. Domates, patlıcan ve kavun genotiplerinin kuraklığa dayanım durumlarını belirlemeye yönelik olarak incelenen özellikler arasındaki ilişkiler. Nevşehir Bilim ve Teknoloji Dergisi, 4 (2): 9-25.
- Kulkarni, M. & U. Deshpande, 2007. Gradient in vitro testing of tomato (Solanum lycopersicon) genotype by inducing water deficit: a new approach to screen germplasm for drought tolerance. Asian Journal of Plant Sciences, 6 (6): 934-940.
- Kusvuran, S. & H.Y. Dasgan, 2017. Drought induced physiological and biochemical responses in Solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum Hortorum Cultus, 16 (6): 19-27.
- Kuşvuran, Ş., S.U. Kıran & Ö. Altuntaş, 2020. Farklı biber genotiplerinde kuraklığın morfolojik, fizyolojik ve biyokimyasal etkileri. Turkish Journal of Agriculture - Food Science and Technology, 8 (6): 1359-1368.
- Meher, Pabba, S., K. AshokReddy & D. Rao, 2018. Effect of PEG-6000 ımposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25 (1): 285-289.
- Mibei, E.K., J. Ambuko, J.J. Giovannoni, A.N. Onyango & W.O. Owino, 2017. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Science & Nutrition, 5 (1): 113-122.
- Michel, B.E. & M.R. Kaufmann, 1973. The osmotic pressure of polyethylene glycol 6000. Plant Physiology, 51 (5): 914-916.
- Mohammadkhani, N. & R. Heidari, 2008. Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars. Pakistan Journal of Biological Sciences, 11 (1): 92-97.
- Nahar, K. & S.M. Ullah, 2018. Drought stress effects on plant water relations, growth, fruit quality and osmotic adjustment of tomato (Solanum lycopersicum) under subtropical condition. Asian Journal of Agricultural and Horticultural Research, 1 (2): 1-14.
- Noori, M., A.M. Azar, M. Saidi, J. Panahandeh & D.Z. Haghi, 2018. Evaluation of water deficiency impacts on antioxidant enzymes activity and lipid peroxidation in some tomato (Solanum lycopersicum L.) lines. Indian Journal of Agricultural Research, 52 (3): 228-235.
- Osmolovskaya N., J. Shumilina, A. Kim, A. Didio., T. Grishina, T. Bilova, O.A. Keltsieva, V. Zhukov, I. Tikhonovich, E. Tarakhovskaya, A. Frolov & L.A. Wessjohann, 2018. Methodology of drought stress research: experimental setup and physiological characterization. International Journal of Molecular Sciences, 19 (4089): 2-25.
- Öztürk, N.S., 2015. Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3 (5): 307-315.
- Rahman, S.M.L., W.A. Mackay, B. Quebedeaux, E. Nawata, T. Sakuratani, A.S.M.M. Udin & B. Quebedeaux, 2004. Superoxide dismutase and stress tolerance of four tomato cultivars. HortScience, 39 (5): 983-986.
- Sahin, U., Y. Kuslu, F.M. Kiziloglu & T. Cakmakci, 2016. Growth, yield, water use and crop quality responses of lettuce to different irrigation quantities in a semi-arid region of high altitude. Journal of Applied Horticulture, 18 (3): 195-202.
- Shamim, F., K. Khan & S. Khalid, 2016. Comparison among Twelve exotic accessions of Tomato (Solanum lycopersicum L.) for root and shoot development under Polyethylene Glycol induced water stress. Pakistan Journal of Phytopathology, 28 (2): 161-171.
- Shamim, F., S.M.S. Naqvi, H.R. Athar & A. Waheed, 2014. Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pakistan Journal of Botany, 46 (4): 1165-1178.
- Strain, H.H. & W.A. Svec, 1966. “Extraction, Separation, Estimation and Isolation of Chlorophylls, 21-66”. In: The Chlorophylls (Eds. L.P. Vernon & G.R. Seely). Academic Press N.Y., 679 pp.
- Süyüm, K. 2011. Karpuz genetik kaynaklarının tuzluluk ve kuraklığa tolerans seviyelerinin belirlenmesi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Adana, Türkiye, 145 s.
- TUİK, 2022. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. (Web sayfası: https: //data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 ) (Erişim tarihi: 18 Şubat 2022).
- Wang, C., L. Zhou, G. Zhang, Y. Xu, X. Gao, N. Jiang, L. Zhang & M. Shao, 2018. Effects of drought stress simulated by polyethylene glycol on seed germination, root and seedling growth, and seedling antioxidant characteristics in Job’s Tears. Agricultural Sciences, 9 (8): 991-1006.
- Wang, D.C., C.H. Jiang, L.N. Zhang, L. Chen, X.Y. Zhang & J.H. Guo, 2019. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. International Journal of Molecular Sciences, 20 (24): 6271.
- Yamasaki, S. & L.R. Dillenburg, 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilleira de Fisiologia Vegetal, 11 (2): 69-75.
- Zgallaï, H., K. Steppe & R. Lemeur, 2005. Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol‐ınduced water deficit. Journal of Integrative Pplant Biology, 47 (12): 1470-1478.
Optimization of suitable tests for rapid screening of tomato genotypes for drought stre ss tolerance at seed germination and vegetative development stages
Year 2022,
, 697 - 707, 31.12.2022
Hakan Altunlu
,
Gökçe Aydöner Çoban
,
Ayşe Gül
Abstract
Objective: This study was conducted to determine the suitability of drought stress induced by PEG-6000 for rapid screening of tomato genetic resources against drought stress.
Material and Methods: Two cultivars; M28 F1 and Alyans F1 known as tolerant and sensitive, respectively; were tested. In seed germination test, two different PEG concentrations (4% and 6%) were compared with the control. The seedling stage test was performed in water culture. In this experiment, (1) bare rooted seedlings of which rooting medium were removed and (2) seedlings with rooting medium were used. Drought dose was Ψs= -1.0 MPa (full dose) and gradually increased (-0.25, -0.50, -0.75 and -1.0 MPa) every 48 hours from 7 days after planting.
Results: In seed germination test, the decrease in vigour index under drought stress was lower in M28 variety. In water culture, stress symptoms appeared slowly if the seedlings with rooting medium were used. The decrease in plant growth characteristics, and chloropyll, carotenoid and relative water content and increase in proline content under stress were lower in M28
Conclusion: It was concluded that the seed germination test by 4% PEG-6000 and water culture in which the drought stress was created by PEG-6000 (Ψs= -1.0 MPa) can be used to screen tomato genetic matierials for drought stress tolerance.
Project Number
117O126 numaralı proje
References
- Aazami, M.A., M. Torabi & E. Jalili, 2010. In vitro response of promising tomato genotypes for tolerance to osmotic stress. African Journal of Biotechnology, 9 (26): 4014-4017.
- Aghaie, P., S.A.H. Tafreshi, M.A. Ebrahimi & M. Haerinasab, 2018. Tolerance evaluation and clustering of fourteen tomato cultivars grown under mild and severe drought conditions. Scientia Horticulturae, 232: 1-12.
- Akgül, G., 2019. Biber Fidelerinde Kuraklık ve Tuz Stresinin Bitki Gelişimi, Besin Maddesi İçeriği, Bazı Biyokimyasal ve Fizyolojik Özellikleri Üzerine Etkisi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Erzurum, Türkiye, 62 s.
- Altunlu, H., 2011. Aşılamanın Domateste Kuraklık Stresi Üzerine Etkileri. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Doktora Tezi, İzmir, Türkiye, 206 s.
- Aras, S. & H. Keles, 2019. Responses of apple plants to drought stress. Journal of Agricultural Studies, Macrothink Institute, 7 (3): 153-159.
- Basha, P.O., G. Sudarsanam, M.M. Sudhana Reddy & N.S. Sankar, 2015. Effect of PEG induced water stress on germination and seedling development of tomato germplasm. International Journal of Recent Scientific Research, 6 (5): 4044-4049.
- Bates, L.S., R.P. Waldren & I.D. Teare, 1973. Rapid determination of free proline for water stress studies, Plant and Soil, 39: 205-207.
- Bhusal, N., S.G. Han & T.M. Yoon, 2019. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus×domestica Borkh.). Scientia Horticulturae, 246: 535-543.
- Bohalima, A.A.O., 2017. Tuz ve Kuraklık Stresinin Domates Gelişimi Üzerine Etkileri. Kastamonu Üniversitesi, Fen Bilimleri Enstitüsü, Biyoloji Bölümü, (Basılmamış) Yüksek Lisans Tezi, Kastamonu, Türkiye, 91 s.
- Buhroy, S., T. Arumugam, N. Manivannan, P. Irene Vethamoni & P. Jeyakumar, 2017. Correlation and path analysis of drought tolerance traits on fruit yield in tomato (Solanum lycopersicum L.) under drought stress condition. Chemical Science Review and Letter, 6 (23): 1670-1676.
- Carvalho, M., M. Matos, I. Castro, E. Monteiro, E. Rosa, T. Lino-Neto & V. Carnide, 2019. Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247: 107-115.
- Caşka Kılıçaslan, S., 2019. Kuraklık Stresinin Fasulyede Bitki Gelişimi ile Bazı Fizyolojik ve Biyokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Erzurum, Türkiye, 46 s.
- Conti, V., L. Mareri, C. Faleri, M. Nepi, M. Romi, G. Cai & C. Cantini, 2019. Drought stress affects the response of Italian local tomato (Solanum lycopersicum L.) varieties in a genotype-dependent manner. Plants (Basel, Switzerland), 8 (9): 336.
- Çelik, Ö., A. Ayan & Ç. Atak, 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Botanical Studies, 58 (1): 32.
- Esan, V.I., T.A. Ayanbamiji, J.O. Adeyemo & S. Oluwafemi, 2018. Effect of drought on seed germination and early seedling of tomato genotypes using Polyethylene Glycol 6000. International Journal of Sciences, 7: 36-43.
- George, S., N. Minhas, S. Jatoi, S. Siddiqui & A. Ghafoor, 2015. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum). Pakistan Journal of Botany, 47 (3): 835-844.
- George, S., S.A. Jatoi & U. Sıddqui, 2013. Genotypic differences against peg simulated drought stress in tomato. Pakistan Journal of Botany, 45 (5): 1551-1556.
- Ghebremariam, K.M., Y. Liang, C. Li, Y. Li & L. Qin 2013. Screening of tomato inbred-lines for drought tolerance at germination and seedling stage. Journal of Agricultural Science, 5 (11): 93-101.
- Ghorbanli, M., M. Gafarabad, T. Amirkian & B.A. Mamaghani, 2012. Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Physiology, 3 (2): 651-658.
- Guellim, A., M. Catterou, O. Chabrerie, T. Tetu, B. Hirel, F. Dubois.& T. Kichey, 2019. Identification of phenotypic and physiological markers of salt stress tolerance in durum wheat (Triticum durum Desf.) through Integrated Analyses. Agronomy, 9 (12): 844.
- Gül, A., 2019. Topraksız Tarım. Meta Basım, 146 s.
- Hamann, F.A., S. Czaja, M. Hunsche, G. Noga & A. Fiebig, 2018. Monitoring physiological and biochemical responses of two apple cultivars to water supaply regimes with non-destructive fluorescence sensors. Scientia Horticulturae, 242: 51-61.
- Hong-Bo, S., C. Xiao-Yan, C. Li-Ye, Z. Xi-Ning, W. Gang, Y. Yong-Bing, Z. Chang-Xing & H. Zan-Min, 2006. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B Biointerfaces, 53 (1): 113-119.
- ISTA, 1993. International Rules for Seed Testing. Rules for Seed Science and Technology.
Jokanović, M.B. & J. Zdravković, 2015. Germination of tomatoes under PEG-induced drought stress, Ratarstvo i povrtarstvo, 52 (3): 108-111.
- Kıran, S., Ş. Kuşvuran, F. Özkay & F.Ş. Ellialtıoğlu, 2015. Domates, patlıcan ve kavun genotiplerinin kuraklığa dayanım durumlarını belirlemeye yönelik olarak incelenen özellikler arasındaki ilişkiler. Nevşehir Bilim ve Teknoloji Dergisi, 4 (2): 9-25.
- Kulkarni, M. & U. Deshpande, 2007. Gradient in vitro testing of tomato (Solanum lycopersicon) genotype by inducing water deficit: a new approach to screen germplasm for drought tolerance. Asian Journal of Plant Sciences, 6 (6): 934-940.
- Kusvuran, S. & H.Y. Dasgan, 2017. Drought induced physiological and biochemical responses in Solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum Hortorum Cultus, 16 (6): 19-27.
- Kuşvuran, Ş., S.U. Kıran & Ö. Altuntaş, 2020. Farklı biber genotiplerinde kuraklığın morfolojik, fizyolojik ve biyokimyasal etkileri. Turkish Journal of Agriculture - Food Science and Technology, 8 (6): 1359-1368.
- Meher, Pabba, S., K. AshokReddy & D. Rao, 2018. Effect of PEG-6000 ımposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25 (1): 285-289.
- Mibei, E.K., J. Ambuko, J.J. Giovannoni, A.N. Onyango & W.O. Owino, 2017. Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Science & Nutrition, 5 (1): 113-122.
- Michel, B.E. & M.R. Kaufmann, 1973. The osmotic pressure of polyethylene glycol 6000. Plant Physiology, 51 (5): 914-916.
- Mohammadkhani, N. & R. Heidari, 2008. Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars. Pakistan Journal of Biological Sciences, 11 (1): 92-97.
- Nahar, K. & S.M. Ullah, 2018. Drought stress effects on plant water relations, growth, fruit quality and osmotic adjustment of tomato (Solanum lycopersicum) under subtropical condition. Asian Journal of Agricultural and Horticultural Research, 1 (2): 1-14.
- Noori, M., A.M. Azar, M. Saidi, J. Panahandeh & D.Z. Haghi, 2018. Evaluation of water deficiency impacts on antioxidant enzymes activity and lipid peroxidation in some tomato (Solanum lycopersicum L.) lines. Indian Journal of Agricultural Research, 52 (3): 228-235.
- Osmolovskaya N., J. Shumilina, A. Kim, A. Didio., T. Grishina, T. Bilova, O.A. Keltsieva, V. Zhukov, I. Tikhonovich, E. Tarakhovskaya, A. Frolov & L.A. Wessjohann, 2018. Methodology of drought stress research: experimental setup and physiological characterization. International Journal of Molecular Sciences, 19 (4089): 2-25.
- Öztürk, N.S., 2015. Bitkilerin kuraklık stresine tepkilerinde bilinenler ve yeni yaklaşımlar. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 3 (5): 307-315.
- Rahman, S.M.L., W.A. Mackay, B. Quebedeaux, E. Nawata, T. Sakuratani, A.S.M.M. Udin & B. Quebedeaux, 2004. Superoxide dismutase and stress tolerance of four tomato cultivars. HortScience, 39 (5): 983-986.
- Sahin, U., Y. Kuslu, F.M. Kiziloglu & T. Cakmakci, 2016. Growth, yield, water use and crop quality responses of lettuce to different irrigation quantities in a semi-arid region of high altitude. Journal of Applied Horticulture, 18 (3): 195-202.
- Shamim, F., K. Khan & S. Khalid, 2016. Comparison among Twelve exotic accessions of Tomato (Solanum lycopersicum L.) for root and shoot development under Polyethylene Glycol induced water stress. Pakistan Journal of Phytopathology, 28 (2): 161-171.
- Shamim, F., S.M.S. Naqvi, H.R. Athar & A. Waheed, 2014. Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pakistan Journal of Botany, 46 (4): 1165-1178.
- Strain, H.H. & W.A. Svec, 1966. “Extraction, Separation, Estimation and Isolation of Chlorophylls, 21-66”. In: The Chlorophylls (Eds. L.P. Vernon & G.R. Seely). Academic Press N.Y., 679 pp.
- Süyüm, K. 2011. Karpuz genetik kaynaklarının tuzluluk ve kuraklığa tolerans seviyelerinin belirlenmesi. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Adana, Türkiye, 145 s.
- TUİK, 2022. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. (Web sayfası: https: //data.tuik.gov.tr/Kategori/GetKategori?p=Tarim-111 ) (Erişim tarihi: 18 Şubat 2022).
- Wang, C., L. Zhou, G. Zhang, Y. Xu, X. Gao, N. Jiang, L. Zhang & M. Shao, 2018. Effects of drought stress simulated by polyethylene glycol on seed germination, root and seedling growth, and seedling antioxidant characteristics in Job’s Tears. Agricultural Sciences, 9 (8): 991-1006.
- Wang, D.C., C.H. Jiang, L.N. Zhang, L. Chen, X.Y. Zhang & J.H. Guo, 2019. Biofilms positively contribute to Bacillus amyloliquefaciens 54-induced drought tolerance in tomato plants. International Journal of Molecular Sciences, 20 (24): 6271.
- Yamasaki, S. & L.R. Dillenburg, 1999. Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasilleira de Fisiologia Vegetal, 11 (2): 69-75.
- Zgallaï, H., K. Steppe & R. Lemeur, 2005. Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol‐ınduced water deficit. Journal of Integrative Pplant Biology, 47 (12): 1470-1478.