Türkiye’de Tekirdağ ili buğday tarlalarının toprak sağlık durumunun nematod çeşitliliğine göre belirlenmesi
Year 2023,
, 627 - 638, 05.01.2024
Lerzan Öztürk
,
Nur Sivri
,
İbrahim Halil Elekcioğlu
Abstract
Amaç: Tekirdağ ilindeki buğday ekim alanlarında nematod biyoçeşitlilik indeksleri kullanılarak toprak sağlığının tahmin edilmesi için bir çalışma yapılmıştır.
Materyal ve Yöntem: Çalışmada buğday tarlalarında tespit edilen nematod taksonları, örnekleme alanlarındaki toprakların sağlık durumunu belirlemek için komünite ve besin ağı analizlerine tabi tutulmuş ve birçok indeks hesaplanmıştır.
Araştırma Bulguları ve Sonuç: Buğday tarlalarında 41 cinse ait nematod türü teşhis edilmiştir. Örnek alınan tarlaların hesaplanan 10 biyoçeşitlilik indeksinin ortalama değerleri aşağıdaki gibidir; Maturity index (MI): 2.26±0.28; Maturity index MI2-5: 2.32±0.33; Shannon-Weiner diversity index (H′): 2.03±0.24, Evennes (J′): 0.90±0.06, Genera Richness index (GR): 8.32±3.17, Channel index (CI): 91±20.44; Basal index (BI): 42.35±12.66; Enrichment index (EI): 41.93±14.3, Structure index (SI): 33.6±26.49 ve Plant-parasitic (PPI) index: 2.88±0.17. İncelenen buğday tarlalarının nematod fauna indeksleri, tarlaların %21'inin iyi gelişmiş ve %79'unun bozulmuş toprak profillerine sahip olduğunu göstermektedir.
Supporting Institution
yok
References
- Ara Khanum, T., N. Mehmood & N. Khatoon, 2022. “Nematodes as Biological Indicators of Soil Quality in the Agroecosystems, 157-168”. In: Nematodes: Recent Advances, Management and New Perspectives (Eds. C. Bellé & T. E. Kaspary). IntechOpen, London, UK, 222 pp. https://doi: 10.5772/intechopen.99745.
- Brzeski, M. W., 1991. Review of the genus Ditylenchus Filipjev, 1936 (Nematoda: Anguinidae). Revue Nematology, 14: 9-59.
- Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14-19.
- Bongers, T., H. Van der Meulen & G. Korthals, 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6: 195-199.
- Castillo, P. & N. Vovlas. 2005. Bionomics and identification of Rotylenchus species. Nematology Monographs and Perspectives, Brill Academic Publishers. 3: 316-148. 10.1163/9789047415077.
- Decaëns, T., J. Jiménez, C. Gioia, J. Measey & P. Lavelle, 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42: 23-38. https://10.1016/j.ejsobi.2006.07.001.
- Du Preez, G., M. Daneel, R.G.M. De Goede, M. J. Du Toit, H. Ferris, H. Fourie, S.A. Geisen, T. Kakouli-Duarte, G.W. Korthals, S. Sanchez-Moreno & J.H. Schmidt, 2022. Nematode-based indices in soil ecology: Application, utility and future directions. Soil Biology and Biochemistry, 169: 1-14. https://doi.org/10.1016/j.soilbio.2022.108640.
- Ferris, H., T. Bongers & R.G.M. De Goede, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18: 13-29.
- Forge, T.A. & S.W. Simard, 2000. Trophic structure of nematode communities, microbial biomass, and nitrogen mineralisation in soils of forests and clear-cuts in the southern interior of British Columbia. Canadian Journal of Soil Science, 80: 401-410.
- Freckman, D.W., 1988. Bacterivorous nematodes and organic matter decomposition. Agriculture, Ecosystems and Environment, 24: 195-217.
- Garg, M., A. Sharma, S. Vats, V. Tiwari, A. Kumari, V. Mishra & M. Krishania, 2021. Vitamins in cereals: A critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Frontiers in Nutrition, 16 (8): 586815. https://doi: 10.3389/fnut.2021.586815. PMID: 34222296; PMCID: PMC8241910.
- Geraert, E. & D. J. Raski. 1987. A reappraisal of Tylenchina (Nemata). Revue Nematologia, 10 (2): 143-161.
- Göze Özdemir, F.G., B. Yaşar & İ.H. Elekcioğlu, 2021. Distribution and population density of plant parasitic nematodes on cereal production areas of Isparta and Burdur Provinces of Turkey. Turkish Journal of Entomology, 45 (1): 53-64. https://doi: 10.16970/entoted.805356.
- Güneş, E. & E. Turmuş, 2020. Evaluation of grain sector in terms of food safety/security in Turkey and the World. Türkiye Biyoetik Dergisi, 7 (3): 124-143.
- Handoo, Z. A., Khan, A. & S. Islam 2007. A key and diagnostic compendium to the species of the genus Merlinius Siddiqi, 1970 (Nematoda: Tylenchida) with description of Merlinius khuzdarensis n. sp. associated with date palm. Nematology, 9: 251-260. DOI: 10.1163/156854107780739045.
- Hassan, G., K. Al-Assas & M. Jamal, 2010. Damage potential and reproduction of Heterodera avenae on wheat under Syrian feld conditions. Nematologia Meditteranea, 38: 73-78.
- Hodda, M., L. Peters & W. Traunspurger, 2009. “Nematode Diversity in Terrestrial, Freshwater Aquatic and Marine Systems, 45-93”. In: Nematodes as Environmental Indicators (Eds. M.J. Wilson & T. Kakouli Duarte). CABI Publishing, England, 340 pp.
- İmren, M., Ş. Yıldız,, V. Çiftçi & A.A. Dababat, 2020. Effect of cereal cyst nematode Heterodera filipjevi on wheat yields in Turkey. Turkish Journal of Agriculture and Forestry, 44 (1): Article 4. https://doi.org/10.3906/tar-1902-17
- Karimipour Fard, H., E. Pourjam, Z. Tanha Maafi & N. Safaie, 2018. Assessment of yield loss of wheat cultivars caused by Heterodera filipjevi under field conditions. Journal of Phytopathology, 166: 299-304.
- Kasapoğlu Uludamar, E.B., Ş.Yıldız, M. İmren, A. Öcal & İ.H. Elekçioğlu, 2018. Occurrence of plant parasitic nematode species in important crops in the Southeast Anatolia Region of Turkey. Turkish Journal of Entomology, 42 (1): 63-74. https://doi: 10.16970/entoted.359616.
- Keçici, A.İ., R. Bozbuğa, A. Öcal, E. Yüksel, G. Özer, Ş. Yildiz, R. Lahlali, B. Slaats, A.A. Dababat & M. İmren, 2022. Diversity and identification of plant-parasitic nematodes in wheat-growing ecosystems. Microorganisms, 10 (8): 1534. https://doi.org/10.3390/microorganisms10081534.
- Laasli, S.E., F. Mokrini, R. Lahlali, T. Wuletaw, T. Paulitz & A.A. Dababat, 2022. Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health bioindicators. Diversity, 14 (3): 194. https://doi.org/10.3390/d14030194.
- Lavelle, P. & A.V. Spain, 2001. Soil Ecology. Springer Science & Business Media, Kluwer, Dordrecht, 654 pp.
- Loof, P. A. A. & M. Luc, 1990. A revised polytomous key for the identification of species of the genus Xiphinema Cobb,1913 (Nematoda: Longidoridae) with exclusion of the X. americanum-group. Systematic Parasitology, 16: 36-66.
- Neher, D.A. & B.J. Darby, 2009. “General Community Indices that Can Be Used for Analysis of Nematode Assemblages, 107-123”. In Nematodes as Environmental Indicators (Eds. M. Wilson & T. Kakouli-Duarte). CABI Publishing, England, 340 pp.
- Olgun, M., S. Erdoğan, İ. Kutlu, N. G. Ayter & Z. Budak Başçiftçi, 2013. Evaluation acreage, production and yield of wheat (T. aestivum L.) by krigging method in Turkey. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14 (1): 162-171.
- Owen, K.J., J.P. Fanning, K.L. Reeves & G.J. Hollaway, 2021. Consistent responses of yield and resistance of wheat cultivars to the root-lesion nematode, Pratylenchus thornei, in the Australian northern subtropical region, but not in the temperate southern region. Plant Pathology, 70: 1790-1806. https://doi.org/10.1111/ppa.13417.
- Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13: 131-144. https://dx.doi.org/10.1016/0022-5193(66)90013-0.
- Sánchez-Moreno, S. & H. Ferris, 2018. “Nematode Ecology and Soil Health, 62-86”. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture (Eds. R. Sikora, D. Coyne, J. Hallmann & P. Timper). CAB International, Wallingford, UK, 876 pp.
- Sánchez-Moreno, S., S. Smukler, H. Ferris, A.T. O’Geen & L.E. Jackson, 2007. Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm. Biology and Fertility of Soils, 44 (5): 727-744. https://doi:10.1007/s00374-007-0256-0.
- Sieriebriennikov, B., H. Ferris, De Goede & R.G.M. de Goede, 2014. NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61: 90-93.
- Topping, D., 2007. Cereal complex carbohydrates and their contribution to human health. Journal of Cereal Science, 46: 220-229.
- TUIK, 2021. Turkish Statistical Institute. (Web page: https:// biruni.tuik.gov.tr/medas/?locale=tr) (Date accessed: October, 2022).
- Yeates, G.W., T. Bongers, R.G.M. De Goede, D.W. Freckman & S.S. Georgieva, 1993. Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology. 25: 315-331.
- Yıldız, Ş., M. İmren & N. Duman, 2017. Nematode biodiversity in cereal growing areas of Bolu, Turkey. Turkish Journal of Entomology, 41 (2): 159-168. https://doi: 10.16970/entoted.292132.
Determination of the soil health status of wheat fields in Tekirdağ, Türkiye, based on nematode diversity
Year 2023,
, 627 - 638, 05.01.2024
Lerzan Öztürk
,
Nur Sivri
,
İbrahim Halil Elekcioğlu
Abstract
Objective: A study was conducted in wheat cultivation areas in Tekirdağ to estimate the soil health of fields using nematode biodiversity indices.
Material and Methods: In the study, nematode taxa identified in wheat fields were subjected to community and food web analyses and several indices were calculated to determine the health status of soils in sampled areas.
Results and Conclusion Nematodes belonging to 41 genera were identified in wheat fields. The mean values of 10 biodiversity indices calculated in each sampled field were as follows; the Maturity index (MI): 2.26±0.28; the Maturity index MI2-5: 2.32±0.33; the Shannon-Weiner diversity index (H′): 2.03±0.24, the Evennes (J′): 0.90±0.06, the Genera Richness index (GR): 8.32±3.17, the Channel index (CI): 91±20.44; the Basal index (BI): 42.35±12.66; the Enrichment index (EI): 41.93±14.3, the Structure index (SI): 33.6±26.49 and the Plant-parasitic (PPI) index: 2.89±0.17. The nematode faunal indices indicate that 21% of surveyed wheat fields have well-developed and 79% have degraded soil profiles.
References
- Ara Khanum, T., N. Mehmood & N. Khatoon, 2022. “Nematodes as Biological Indicators of Soil Quality in the Agroecosystems, 157-168”. In: Nematodes: Recent Advances, Management and New Perspectives (Eds. C. Bellé & T. E. Kaspary). IntechOpen, London, UK, 222 pp. https://doi: 10.5772/intechopen.99745.
- Brzeski, M. W., 1991. Review of the genus Ditylenchus Filipjev, 1936 (Nematoda: Anguinidae). Revue Nematology, 14: 9-59.
- Bongers, T., 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14-19.
- Bongers, T., H. Van der Meulen & G. Korthals, 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6: 195-199.
- Castillo, P. & N. Vovlas. 2005. Bionomics and identification of Rotylenchus species. Nematology Monographs and Perspectives, Brill Academic Publishers. 3: 316-148. 10.1163/9789047415077.
- Decaëns, T., J. Jiménez, C. Gioia, J. Measey & P. Lavelle, 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42: 23-38. https://10.1016/j.ejsobi.2006.07.001.
- Du Preez, G., M. Daneel, R.G.M. De Goede, M. J. Du Toit, H. Ferris, H. Fourie, S.A. Geisen, T. Kakouli-Duarte, G.W. Korthals, S. Sanchez-Moreno & J.H. Schmidt, 2022. Nematode-based indices in soil ecology: Application, utility and future directions. Soil Biology and Biochemistry, 169: 1-14. https://doi.org/10.1016/j.soilbio.2022.108640.
- Ferris, H., T. Bongers & R.G.M. De Goede, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18: 13-29.
- Forge, T.A. & S.W. Simard, 2000. Trophic structure of nematode communities, microbial biomass, and nitrogen mineralisation in soils of forests and clear-cuts in the southern interior of British Columbia. Canadian Journal of Soil Science, 80: 401-410.
- Freckman, D.W., 1988. Bacterivorous nematodes and organic matter decomposition. Agriculture, Ecosystems and Environment, 24: 195-217.
- Garg, M., A. Sharma, S. Vats, V. Tiwari, A. Kumari, V. Mishra & M. Krishania, 2021. Vitamins in cereals: A critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Frontiers in Nutrition, 16 (8): 586815. https://doi: 10.3389/fnut.2021.586815. PMID: 34222296; PMCID: PMC8241910.
- Geraert, E. & D. J. Raski. 1987. A reappraisal of Tylenchina (Nemata). Revue Nematologia, 10 (2): 143-161.
- Göze Özdemir, F.G., B. Yaşar & İ.H. Elekcioğlu, 2021. Distribution and population density of plant parasitic nematodes on cereal production areas of Isparta and Burdur Provinces of Turkey. Turkish Journal of Entomology, 45 (1): 53-64. https://doi: 10.16970/entoted.805356.
- Güneş, E. & E. Turmuş, 2020. Evaluation of grain sector in terms of food safety/security in Turkey and the World. Türkiye Biyoetik Dergisi, 7 (3): 124-143.
- Handoo, Z. A., Khan, A. & S. Islam 2007. A key and diagnostic compendium to the species of the genus Merlinius Siddiqi, 1970 (Nematoda: Tylenchida) with description of Merlinius khuzdarensis n. sp. associated with date palm. Nematology, 9: 251-260. DOI: 10.1163/156854107780739045.
- Hassan, G., K. Al-Assas & M. Jamal, 2010. Damage potential and reproduction of Heterodera avenae on wheat under Syrian feld conditions. Nematologia Meditteranea, 38: 73-78.
- Hodda, M., L. Peters & W. Traunspurger, 2009. “Nematode Diversity in Terrestrial, Freshwater Aquatic and Marine Systems, 45-93”. In: Nematodes as Environmental Indicators (Eds. M.J. Wilson & T. Kakouli Duarte). CABI Publishing, England, 340 pp.
- İmren, M., Ş. Yıldız,, V. Çiftçi & A.A. Dababat, 2020. Effect of cereal cyst nematode Heterodera filipjevi on wheat yields in Turkey. Turkish Journal of Agriculture and Forestry, 44 (1): Article 4. https://doi.org/10.3906/tar-1902-17
- Karimipour Fard, H., E. Pourjam, Z. Tanha Maafi & N. Safaie, 2018. Assessment of yield loss of wheat cultivars caused by Heterodera filipjevi under field conditions. Journal of Phytopathology, 166: 299-304.
- Kasapoğlu Uludamar, E.B., Ş.Yıldız, M. İmren, A. Öcal & İ.H. Elekçioğlu, 2018. Occurrence of plant parasitic nematode species in important crops in the Southeast Anatolia Region of Turkey. Turkish Journal of Entomology, 42 (1): 63-74. https://doi: 10.16970/entoted.359616.
- Keçici, A.İ., R. Bozbuğa, A. Öcal, E. Yüksel, G. Özer, Ş. Yildiz, R. Lahlali, B. Slaats, A.A. Dababat & M. İmren, 2022. Diversity and identification of plant-parasitic nematodes in wheat-growing ecosystems. Microorganisms, 10 (8): 1534. https://doi.org/10.3390/microorganisms10081534.
- Laasli, S.E., F. Mokrini, R. Lahlali, T. Wuletaw, T. Paulitz & A.A. Dababat, 2022. Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health bioindicators. Diversity, 14 (3): 194. https://doi.org/10.3390/d14030194.
- Lavelle, P. & A.V. Spain, 2001. Soil Ecology. Springer Science & Business Media, Kluwer, Dordrecht, 654 pp.
- Loof, P. A. A. & M. Luc, 1990. A revised polytomous key for the identification of species of the genus Xiphinema Cobb,1913 (Nematoda: Longidoridae) with exclusion of the X. americanum-group. Systematic Parasitology, 16: 36-66.
- Neher, D.A. & B.J. Darby, 2009. “General Community Indices that Can Be Used for Analysis of Nematode Assemblages, 107-123”. In Nematodes as Environmental Indicators (Eds. M. Wilson & T. Kakouli-Duarte). CABI Publishing, England, 340 pp.
- Olgun, M., S. Erdoğan, İ. Kutlu, N. G. Ayter & Z. Budak Başçiftçi, 2013. Evaluation acreage, production and yield of wheat (T. aestivum L.) by krigging method in Turkey. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14 (1): 162-171.
- Owen, K.J., J.P. Fanning, K.L. Reeves & G.J. Hollaway, 2021. Consistent responses of yield and resistance of wheat cultivars to the root-lesion nematode, Pratylenchus thornei, in the Australian northern subtropical region, but not in the temperate southern region. Plant Pathology, 70: 1790-1806. https://doi.org/10.1111/ppa.13417.
- Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13: 131-144. https://dx.doi.org/10.1016/0022-5193(66)90013-0.
- Sánchez-Moreno, S. & H. Ferris, 2018. “Nematode Ecology and Soil Health, 62-86”. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture (Eds. R. Sikora, D. Coyne, J. Hallmann & P. Timper). CAB International, Wallingford, UK, 876 pp.
- Sánchez-Moreno, S., S. Smukler, H. Ferris, A.T. O’Geen & L.E. Jackson, 2007. Nematode diversity, food web condition, and chemical and physical properties in different soil habitats of an organic farm. Biology and Fertility of Soils, 44 (5): 727-744. https://doi:10.1007/s00374-007-0256-0.
- Sieriebriennikov, B., H. Ferris, De Goede & R.G.M. de Goede, 2014. NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61: 90-93.
- Topping, D., 2007. Cereal complex carbohydrates and their contribution to human health. Journal of Cereal Science, 46: 220-229.
- TUIK, 2021. Turkish Statistical Institute. (Web page: https:// biruni.tuik.gov.tr/medas/?locale=tr) (Date accessed: October, 2022).
- Yeates, G.W., T. Bongers, R.G.M. De Goede, D.W. Freckman & S.S. Georgieva, 1993. Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology. 25: 315-331.
- Yıldız, Ş., M. İmren & N. Duman, 2017. Nematode biodiversity in cereal growing areas of Bolu, Turkey. Turkish Journal of Entomology, 41 (2): 159-168. https://doi: 10.16970/entoted.292132.