Research Article
BibTex RIS Cite

Bornova üniversite caddesi yol ağaçlarının hava kalitesi üzerine etkisi

Year 2021, , 247 - 252, 30.06.2021
https://doi.org/10.20289/zfdergi.697540

Abstract

Amaç: Bu çalışmada İzmir kenti Bornova ilçesinde bulunan Ağaçlı Yol olarak bilinen 2.5 km uzunluğundaki Üniversite Caddesinde yer alan yol ağaçlarının hava kalitesini iyileştirmesine yönelik ekosistem servisinin hesaplanması amaçlanmıştır.
Materyal ve Yöntem: Araştırma materyalini Üniversite Caddesinde bulunan yol ağaçları oluşturmaktadır. Araştırmada yolun her iki kıyısında bulunan yetişkin demir ağaçlarının (Casuarina equisetifolia) coğrafi konumları ile boy, taç genişliği, taç yüksekliği, gövde kalınlığı gibi fiziksel özellikleri yapılan ölçümlerle belirlenmiş ve ağaç envanteri hazırlanmıştır. Bu ağaçların yıl içinde hava kalitesini iyileştirme ekosistem servisi kuru çöküntü yöntemi kullanılarak hesaplanmıştır.
Araştırma Bulguları: Çalışmada, 483 adet demir ağacının bir yılda atmosferden 161 kg kirletici (O3, NO2, SO2, PM10) toplama potansiyeline sahip olduğu belirlenmiştir.
Sonuç: İzmir kentinin en eski ağaçlı yollarından biri olan ve bu yeşil koridor ekolojik özellikleriyle kentin hava kalitesinin iyileştirilmesine ve kent halkının yaşam kalitesinin yükselmesine olumlu katkıda bulunmaktadır. Ağaçların hava kalitesini iyileştirme fonksiyonlarının kirletici kaynaklarına yakın olduğu durumlarda yüksek olması nedeniyle koridorun yol kıyısında bulunması sağladığı etkiyi arttırmaktadır. Sonuç olarak kent içindeki yeşil koridorların sağladığı ekosistem servislerinin niceliksel olarak ortaya konulması, ekolojik kalitesi yüksek yeşil alanlara sahip, dayanıklı kentlerin oluşmasına katkı sağlayacaktır.

Supporting Institution

EGE UNIVERSITESI

Project Number

2016-ZRF-012

Thanks

Bu çalışma 2016-ZRF-012 nolu proje kapsamında hazırlanmış olup, projeyi destekleyen Ege Üniversitesi Bilimsel Araştırma Projeleri Komisyonu ile arazi çalışmalarını gerçekleştiren peyzaj mimarı S. Elvan Gündüzlü, Cihan Orpak ve Mahmut Turgut Çakır'a teşekkür ederiz.

References

  • Berberoğlu, S., Çilek, A., Ünlükaplan, Y. 2019. A Framework for Resilient Cities: Green Infrastructure Based on Adaptation Project Modelling, Mapping, Analysis and Training (H. Alphan, H., C. Coşkun Hepcan, eds.). PARDUS, Ankara, 168p.
  • Baldocchi, D.D., Hicks, B.B. Camara, P. 1987. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmospheric Environment 21: 91–101.
  • Baro, F., Chaparro, L., Gomez-Baggethun, E.,J., Nowak,D.J., Terradas, J. 2014. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain, AMBIO 43:466–479.
  • Coskun Hepcan, C., Hepcan, S. 2017. Ege Universitesi Lojmanlar Yerleskesinin Hava Kalitesinin Iyilestirilmesine Yonelik Duzenleyici Ekosistem Servislerinin Hesaplanmasi, Ege Universitesi Ziraat Fakultesi Dergisi 54 (1): 113- 120.
  • CSB, 2017. Çevre ve Şehircilik Bakanlığı Hava İzleme Kalite Aği Verileri, Erişim, Ocak2018.
  • Fenn, M.E., de Bauer, L.I, Hernandez-Tejeda, T. (Eds.) (2002). Urban Air Pollution and Forests: Resources at Risk in the Mexico City Air Basin. Springer, New York, p. 387pp.
  • Freer-Smith, P., Beckett, K., Taylor, G. (2005). Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa ‘Beaupre’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 133, 157-167.
  • Forman, R.T.T. (2014). Urban ecology science of cities. Cambridge University Press, p. 462. ISBN-13: 978-052118824.
  • Fowler, D., 2002. In: Bell, J.N.B., Treshow, M. (Eds.), Pollutant deposition and uptake by vegetation, second ed. John Wiley and Sons Ltd, West Sussex, England, pp. 43-67.
  • Lovett, G.M. 1994. Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecological Application 4: 629-650.
  • McPherson, E.G., Scott, K.I., Simpson, J.R., 1998. Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment 32, 75–84.
  • MEA, 2005. Millenium ecosystem assessment. Ecosystems and Human Well-Being. Island Press, DC: Island). Washington DC, USA.
  • MGM, 2017. T.C. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü İklim Verileri.
  • Nowak, D.J. 1994. Air pollution removal by Chicago’s urban forest. In: McPherson, E.G, Nowak, D.J., and Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report NE-186. pp. 63-81.
  • Nowak, D.J., Crane, D.E., Stevens, J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4, 115-123.
  • Schlesinger, R.B. 2007. The health impact of common inorganic companents of fine particulate matter in ambient air: a critical review, Inhalation toxicology 19: 811-832.
  • Tallis, M., Taylor, G., Sinnett, D., Freer-Smith, P. 2011, Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103, 129-138.
  • Wang, Y., Zhou, G. 2000. Analysis on quantitative simulation of stomatal conductance of Aneurolepidium chinense. Acta Phytoecologica Sinica 24: 739-743.
  • Shan, Y., Jingping, C., Liping, C., Zhemin, S., Xiaodong, Z., Dan, W., Wenhua, W. 2007. Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere, Acta Ecologica Sinica 27(11): 4590-4595.
  • Yong, H., Lei, L., WeiXing, L., LiQiang, M. 2010. Air purification efficiency of thirty species of landscape trees in northern China, Journal of Northeast Forestry University 38 (5):37-39.

Air quality effects of Bornova university street trees

Year 2021, , 247 - 252, 30.06.2021
https://doi.org/10.20289/zfdergi.697540

Abstract

Purpose: The aim of this research is to estimate the air purification ecosystem services of street trees of University Street.
Materials and Methods: Australian pine trees (Casuarina equisetifolia) located on the both side of the University Street were the reseach materials. Geographic locations, and physical characteristics such as tree height, crown width/height, and diameters of breast height of the trees were measured in the field. In this research, the air purification regulating ecosystem services provided by the trees in the green corridor was calculated by using dry deposition.
Results: In this research, the air pollutant removal capacity of the 453 trees was estimated 161 kg year (O3, NO2, SO2, PM10).
Conclusion: As one of the oldest green corridors in Izmir, the University Street helped to improve the health and well-being of residents by reducing air pollutants. Trees can improve air quality by intercepting pollutants through their leaves depending on their ecological characteristics, climate and environmental conditions. The air pollutant removal capacity of trees is high when they close to the source of the pollutant. As a roadside green corridor, the benefits of the University Street is high. Therefore, calculating their ecosystem services of urban green corridors will help to create resilient cities with high ecological value.

Project Number

2016-ZRF-012

References

  • Berberoğlu, S., Çilek, A., Ünlükaplan, Y. 2019. A Framework for Resilient Cities: Green Infrastructure Based on Adaptation Project Modelling, Mapping, Analysis and Training (H. Alphan, H., C. Coşkun Hepcan, eds.). PARDUS, Ankara, 168p.
  • Baldocchi, D.D., Hicks, B.B. Camara, P. 1987. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmospheric Environment 21: 91–101.
  • Baro, F., Chaparro, L., Gomez-Baggethun, E.,J., Nowak,D.J., Terradas, J. 2014. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain, AMBIO 43:466–479.
  • Coskun Hepcan, C., Hepcan, S. 2017. Ege Universitesi Lojmanlar Yerleskesinin Hava Kalitesinin Iyilestirilmesine Yonelik Duzenleyici Ekosistem Servislerinin Hesaplanmasi, Ege Universitesi Ziraat Fakultesi Dergisi 54 (1): 113- 120.
  • CSB, 2017. Çevre ve Şehircilik Bakanlığı Hava İzleme Kalite Aği Verileri, Erişim, Ocak2018.
  • Fenn, M.E., de Bauer, L.I, Hernandez-Tejeda, T. (Eds.) (2002). Urban Air Pollution and Forests: Resources at Risk in the Mexico City Air Basin. Springer, New York, p. 387pp.
  • Freer-Smith, P., Beckett, K., Taylor, G. (2005). Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides X trichocarpa ‘Beaupre’, Pinus nigra and X Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 133, 157-167.
  • Forman, R.T.T. (2014). Urban ecology science of cities. Cambridge University Press, p. 462. ISBN-13: 978-052118824.
  • Fowler, D., 2002. In: Bell, J.N.B., Treshow, M. (Eds.), Pollutant deposition and uptake by vegetation, second ed. John Wiley and Sons Ltd, West Sussex, England, pp. 43-67.
  • Lovett, G.M. 1994. Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecological Application 4: 629-650.
  • McPherson, E.G., Scott, K.I., Simpson, J.R., 1998. Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment 32, 75–84.
  • MEA, 2005. Millenium ecosystem assessment. Ecosystems and Human Well-Being. Island Press, DC: Island). Washington DC, USA.
  • MGM, 2017. T.C. Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü İklim Verileri.
  • Nowak, D.J. 1994. Air pollution removal by Chicago’s urban forest. In: McPherson, E.G, Nowak, D.J., and Rowntree, R.A. Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report NE-186. pp. 63-81.
  • Nowak, D.J., Crane, D.E., Stevens, J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4, 115-123.
  • Schlesinger, R.B. 2007. The health impact of common inorganic companents of fine particulate matter in ambient air: a critical review, Inhalation toxicology 19: 811-832.
  • Tallis, M., Taylor, G., Sinnett, D., Freer-Smith, P. 2011, Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning, 103, 129-138.
  • Wang, Y., Zhou, G. 2000. Analysis on quantitative simulation of stomatal conductance of Aneurolepidium chinense. Acta Phytoecologica Sinica 24: 739-743.
  • Shan, Y., Jingping, C., Liping, C., Zhemin, S., Xiaodong, Z., Dan, W., Wenhua, W. 2007. Effects of vegetation status in urban green spaces on particle removal in a street canyon atmosphere, Acta Ecologica Sinica 27(11): 4590-4595.
  • Yong, H., Lei, L., WeiXing, L., LiQiang, M. 2010. Air purification efficiency of thirty species of landscape trees in northern China, Journal of Northeast Forestry University 38 (5):37-39.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Çiğdem Coşkun Hepcan 0000-0002-8287-0506

Aybuke Canguzel

Project Number 2016-ZRF-012
Publication Date June 30, 2021
Submission Date March 2, 2020
Acceptance Date July 2, 2020
Published in Issue Year 2021

Cite

APA Coşkun Hepcan, Ç., & Canguzel, A. (2021). Bornova üniversite caddesi yol ağaçlarının hava kalitesi üzerine etkisi. Journal of Agriculture Faculty of Ege University, 58(2), 247-252. https://doi.org/10.20289/zfdergi.697540

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.