Amaç: Bu çalışmada kırılma döneminde hasat edilen domates (Solanum lycopersicum L. cv. Zahide) meyvelerinin farklı dalga boylarındaki LED ile aydınlatılmasının hasat sonrası kalitesi üzerine etkileri araştırılmıştır.
Materyal ve Yöntem: Hasat edilen domatesler 500 g polistiren köpük tabaklara yerleştirilmiş ve üzeri streç filmle sarılmıştır. Ardından meyveler 4±1ºC sıcaklık ve %85-90 oransal nem içeren odada, kırmızı (R), mavi (B), yeşil (G) ve beyaz (W) ışık şartları altında 42 gün süreyle depolanmıştır. Karanlıkta depolanan meyveler kontrol (C) olarak kullanılmıştır.
Araştırma Bulguları: R ve W LED uygulamaları, meyvelerin hue açısı, sarılık indeksi ve meyve eti sertliğini arttırmıştır. Mavi LED aydınlatma ayrıca yaşlanmanın geciktiğinin göstergesi olan elektrolit sızıntısını azaltmıştır. Ek olarak mavi ve kırmızı LED aydınlatma meyve çürümelerini geciktirmiştir.
Sonuç: Sonuç olarak, mavi LED aydınlatmanın kırılma döneminde hasat edilen domateslerin hasat sonrası kalitesinin korunmasında kırmızı, beyaz ve yeşil LED ışıktan daha etkili olduğu bulunmuştur.
Kocaeli Üniversitesi, Bilimsel Araştırmalar Proje Birimi
Project Number
2019/025
References
Affandi, F.Y., J.C. Verdonk, T. Ouzounis, Y. Ji, E.J. Wotering & R.E. Schouten, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit, Postharvest Biology and Technology, 159: 111019. https://doi.org/10.1016/j.postharvbio.2019.111019
Azzolini, M., A.H. Jacomino, I.U. Bron, R.A. Kluge & M.A. Schiavinato, 2005. Ripening of "Pedro Sato" guava: a study on its climacteric or non-climacteric nature, Brazilian Journal of Plant Physiology, 17(3): 299-306. https://doi.org/10.1590/S1677-04202005000300004
Chalker-Scott, L. & L.H. Fuchigami, 2018. “The role of phenolic compounds in plant stress responses, 67-80”. In: Low-Temperature Stress Physiology in Crops. (Ed. P.H. Li), CRC Press Inc., Boca Raton, Florida, 190pp.
Deng, L., C. Hu, J. Li & M.A. Ritenour, 2016. Effects of blue or red LED light irradiation on postharvest degreening of citrus fruit, American Society for Horticultural Science, ASHS, https://ashs.confex.com/ashs/2016 /webprogram/ Paper24941.html. https://doi.org/10.1021/jf203364m
Dumvilli, J.C. & S.C. Fry, 2000. Uronic acid derived oligosaccharides: Their biosynthesis degradation and signaling role in non-diseased plant tissues, Plant Physiology Biochemistry, 38: 125-140. https://doi.org/10.1016/S0981-9428(00)00163-7
Eroğul, D. & B. Özmen, 2020. Determination of storage and shelf life of sweet cherry varieties produced in early region, Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (3):359-366. https://doi.org/10.20289/zfdergi.634609
Fanwoua, J., G. Vercambre, G. Buck-Sorlin, A. Dieleman, P. de Visser & M. Gènard, 2019. Supplemental LED lighting affects the dynamics of tomato fruit growth and composition, Scientia Horticulturae, 256:108571. https://doi.org/10.1016/j.scienta.2019.108571
FAOSTAT, 2019. Crops, Tomato Production Data, http://www.fao.org/faostat/en/#data/QC
Gharezi, M., N. Joshi & E. Sadeghian, 2012. Effect of postharvest treatment on stored cherry tomatoes, Journal of Nutrition & Food Sciences, Sci 2: 8. https://doi.org/10.4172/2155-9600.1000157
González‐Aguilar, G.A., S. Ruiz-Cruz, H. Soto-Valdez, F. Vázquez‐Ortiz, R. Pacheco-Aguilar & C.Y. Wang, 2005. Biochemical changes of fresh-cut pineapple slices treated with antibrowning agents, International Journal of Food Science & Technology, 40(4): 377-383. https://doi.org/10.1111/j.1365-2621.2004.00940.x
Huang, J.Y., F. Xu & W. Zhou, 2018. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit, Journal of the Science of Food and Agriculture, 98(14):5486–5493. https://doi.org/10.1002/jsfa.9093
Islam, M.P., T. Morimoto & K. Hatou, 2012. Storage behavior of tomato inside a zero energy cool chamber, Agricultural Engineering International: CIGR Journal, 14(4): 209-217.
Kanazawa, K., T. Hashimoto, S. Yoshida, P. Sungwon & S. Fukuda, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables, Journal of Agricultural Food Chemistry, 60: 4359-4368. https://doi.org/10.1021/jf300107s
Karaçalı, İ., 2006. Bahçe Ürünlerinin Muhafazası ve Pazarlanması, Ege Üniversitesi Ziraat Fakültesi Yayınları No: 494, Bornova-İzmir.
Kasım, M.U. & R. Kasım, 2017. While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions, Journal of Food Processing and Preservation, 41(6): e13266. https://doi.org/10.1111/jfpp.13266
Kasım, M.U. & R. Kasım, 2015. Postharvest UV-B treatments increased fructose content of tomato (Solanum lycopersicon L., cv. Tayfun F1) harvested at different ripening stages, Food Science and Technology-Brazil, 35(4): 742-749. https://doi.org/10.1590/1678-457X.0008
Kim, B., H. Lee, J. Kim, K. Kwon, H. Cha & J. Kim, 2011. An effect of light-emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry, Horticulture, Environment, and Biotechnology, 52: 35-39. https://doi.org/10.1007/s13580-011-0189-2
Kokalj, D., J. Hribar, B. Cigić, E. Zlatić, L. Demšar, L. Sinkovič, H. Šircelj, G. Bizjak & R. Vidrih, 2016. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit, Food Technology and Biotechnology, 54(2): 228-235. https://doi.org/10.17113/ftb.54.02.16.4096
Kondo, S., H. Tomiyama, A. Rodyoung, K. Okawa, H. Ohara, S. Sugaya, N. Terahara & N. Hirai, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night, Journal of Plant Physiologly, 171, 823-829. https://doi.org/10.1016/j.jplph.2014.01.001
Lancester, J.E., C.E. Lister, P.F. Reay & C.M. Triggs, 1997. Influence of pigment composition on skin color in a wide range of fruit and vegetables, Journal of the American Society for Horticultural Science, 122(4): 594-598. https://doi.org/10.21273/JASHS.122.4.594
Lavdas, E., 2016. Effect of LED-light and temperature on firmness and cell wall metabolism of tomato fruits. Wageningen University, (Unpublished) MSc Thesis, The Netherlands
Lee, Y.J., J.Y. Ha, J.E. Oh & M.S. Cho, 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature, Food Science and Biotechnolgy, 23: 1087. https://doi.org/10.1007/s10068-014-0149-6
Lei, J., N. Zhang, R. Yan, L. Xu, Y. Li & W. Guan, 2016. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage, Chinese Society of Agricultural Engineering, 32(9): 248. https://doi.org/10.11975/j.issn.1002-6819.2016.09.035
Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang & W. Wang, 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities, Scientia Horticulturae, 225: 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
Liu, L.H., D. Zabaras, L.E. Bennett, P. Aguas & B.W. Woonton, 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage, Food Chemistry, 115(2): 495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiawa, M. Yahata, Y. Ikoma & H. Matsumoto, 2015. Effect of the combination of ethylene and red LED light irratiation carotenoid accumulation and carotenogenic gene expression in the flovedo of citrus furit, Postharvest Biology and Technology, 99: 99-104. https://doi.org/10.1016/j.postharvbio.2014.08.002
Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiwa, M. Yahata, Y. Ikoma & H. Matsumoto, 2012. Effect of blue and red light irradiaton of β-cryptoxanthin accumulation in the flavedo of citrus fruits, Journal of Agricultural and Food Chemistry, 60: 197-201. https://doi.org/10.1021/jf203364m
Mcguire, R.G., 1992. Reporting of objective color measurements, HortScience, 27(12):1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
Meena, O.P., V. Bahadur, A. Jagtap & P. Saini, 2015. Genetic analysis of agronomic and biochemical variables among different tomato (Solanum lycopersicum L.) accessions, Journal of Applied and Natural Science, 7 (2): 806–816. https://doi.org/10.31018/jans.v7i2.687
Nájera, C., J.L. Guil-Guerrero, L. Jarquín-Enríquez, J.E. Álvaro & M. Urrestarazu, 2018. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit, Postharvest Biology and Technology, 145: 151-156. https://doi.org/10.1016/j.postharvbio.2018.07.008
Ntagkas, N., E. Woltering, S. Bouras, R.C.H. de Vos, J.A. Dieleman, C.C.S. Nicole, C. Labrie & L.F.M. Marcelis, 2019. Light-induced vitamin C accumulation in tomato fruits in independent of carbohydrate availability, Plants, 8(4):86. https://doi.org/10.3390/plants8040086
Panjai, L., G. Noga, A. Fiebig & M. Hunsche, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes, Scientia Horticulturae, 226: 97-103. https://doi.org/10.1016/j.scienta.2017.08.035
Xu, F., S. Cao, L. Shi & Z. Yang, 2014a. Blue light irradiation affects anthocyanin content and enzymes activities involved in postharvest strawberry fruit, Journal of Agricultural and Food Chemistry, 62: 20. https://doi.org/10.1021/jf501120u
Yamaga, I., T. Takahashi, K. Ishii, M. Kato & Y. Kobayashi, 2015. Antifungal effect of blue LED irradiation on the blue mold Penicillium italicum in Satsuma mandarin fruits, Horticultural Research in Japan, 14(1): 83-87. https://doi.org/10.2503/hrj.14.83
Zhang, J., Y. Zhang, S. Song, W. Su, Y. Hao & H. Liu, 2020. Supplementary red light result in the earlier ripening of tomato fruit depending on ethylene production, Environmental and Experimental Botany,175:104044. https://doi.org/10.1016/j.envexpbot.2020.104044
Žnidarčič, D., D. Ban, M. Oplanić, L. Karić & T. Požrl, 2010. Influence of postharvest temperatures on physicochemical quality of tomatoes (Lycopersicon esculentum Mill.), Journal of Food, Agriculture and Environment, 8(1): 21-25.
Blue LED lighting improves the postharvest quality of tomato (Solanum lycopersicum L. cv. Zahide F1) fruits
Objective: The objective of this study was to investigate the effects of different wavelengths of LED lighting on the postharvest quality of tomatoes (Solanum lycopersicum L. cv. Zahide) during breaker harvest stages..
Material and Methods: Harvested tomato fruits were placed on 500 g polystyrene foam dishes and wrapped with stretch film. They then were stored in 4±1ºC temperature and 85-90% relative humidity for 42 days under the red (R), blue (B), green (G) and white (W) LED light conditions. The fruits stored in the dark were used as control (C).
Results: R and W LED treatments increased hue angle value, yellowness index value, and fruit firmness of tomatoes Blue LED lighting, also decreased electrolyte leakage that indicates delaying senescence. It was also found that blue and red LED lighting delayed fruit decay.
Conclusion: As a conclusion, it could be satated that the blue LED lighting was found to be more effective than the red, white and green LED light in maintaining the quality of the tomatoes harvested at the breaking stage.
Affandi, F.Y., J.C. Verdonk, T. Ouzounis, Y. Ji, E.J. Wotering & R.E. Schouten, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit, Postharvest Biology and Technology, 159: 111019. https://doi.org/10.1016/j.postharvbio.2019.111019
Azzolini, M., A.H. Jacomino, I.U. Bron, R.A. Kluge & M.A. Schiavinato, 2005. Ripening of "Pedro Sato" guava: a study on its climacteric or non-climacteric nature, Brazilian Journal of Plant Physiology, 17(3): 299-306. https://doi.org/10.1590/S1677-04202005000300004
Chalker-Scott, L. & L.H. Fuchigami, 2018. “The role of phenolic compounds in plant stress responses, 67-80”. In: Low-Temperature Stress Physiology in Crops. (Ed. P.H. Li), CRC Press Inc., Boca Raton, Florida, 190pp.
Deng, L., C. Hu, J. Li & M.A. Ritenour, 2016. Effects of blue or red LED light irradiation on postharvest degreening of citrus fruit, American Society for Horticultural Science, ASHS, https://ashs.confex.com/ashs/2016 /webprogram/ Paper24941.html. https://doi.org/10.1021/jf203364m
Dumvilli, J.C. & S.C. Fry, 2000. Uronic acid derived oligosaccharides: Their biosynthesis degradation and signaling role in non-diseased plant tissues, Plant Physiology Biochemistry, 38: 125-140. https://doi.org/10.1016/S0981-9428(00)00163-7
Eroğul, D. & B. Özmen, 2020. Determination of storage and shelf life of sweet cherry varieties produced in early region, Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (3):359-366. https://doi.org/10.20289/zfdergi.634609
Fanwoua, J., G. Vercambre, G. Buck-Sorlin, A. Dieleman, P. de Visser & M. Gènard, 2019. Supplemental LED lighting affects the dynamics of tomato fruit growth and composition, Scientia Horticulturae, 256:108571. https://doi.org/10.1016/j.scienta.2019.108571
FAOSTAT, 2019. Crops, Tomato Production Data, http://www.fao.org/faostat/en/#data/QC
Gharezi, M., N. Joshi & E. Sadeghian, 2012. Effect of postharvest treatment on stored cherry tomatoes, Journal of Nutrition & Food Sciences, Sci 2: 8. https://doi.org/10.4172/2155-9600.1000157
González‐Aguilar, G.A., S. Ruiz-Cruz, H. Soto-Valdez, F. Vázquez‐Ortiz, R. Pacheco-Aguilar & C.Y. Wang, 2005. Biochemical changes of fresh-cut pineapple slices treated with antibrowning agents, International Journal of Food Science & Technology, 40(4): 377-383. https://doi.org/10.1111/j.1365-2621.2004.00940.x
Huang, J.Y., F. Xu & W. Zhou, 2018. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit, Journal of the Science of Food and Agriculture, 98(14):5486–5493. https://doi.org/10.1002/jsfa.9093
Islam, M.P., T. Morimoto & K. Hatou, 2012. Storage behavior of tomato inside a zero energy cool chamber, Agricultural Engineering International: CIGR Journal, 14(4): 209-217.
Kanazawa, K., T. Hashimoto, S. Yoshida, P. Sungwon & S. Fukuda, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables, Journal of Agricultural Food Chemistry, 60: 4359-4368. https://doi.org/10.1021/jf300107s
Karaçalı, İ., 2006. Bahçe Ürünlerinin Muhafazası ve Pazarlanması, Ege Üniversitesi Ziraat Fakültesi Yayınları No: 494, Bornova-İzmir.
Kasım, M.U. & R. Kasım, 2017. While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions, Journal of Food Processing and Preservation, 41(6): e13266. https://doi.org/10.1111/jfpp.13266
Kasım, M.U. & R. Kasım, 2015. Postharvest UV-B treatments increased fructose content of tomato (Solanum lycopersicon L., cv. Tayfun F1) harvested at different ripening stages, Food Science and Technology-Brazil, 35(4): 742-749. https://doi.org/10.1590/1678-457X.0008
Kim, B., H. Lee, J. Kim, K. Kwon, H. Cha & J. Kim, 2011. An effect of light-emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry, Horticulture, Environment, and Biotechnology, 52: 35-39. https://doi.org/10.1007/s13580-011-0189-2
Kokalj, D., J. Hribar, B. Cigić, E. Zlatić, L. Demšar, L. Sinkovič, H. Šircelj, G. Bizjak & R. Vidrih, 2016. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit, Food Technology and Biotechnology, 54(2): 228-235. https://doi.org/10.17113/ftb.54.02.16.4096
Kondo, S., H. Tomiyama, A. Rodyoung, K. Okawa, H. Ohara, S. Sugaya, N. Terahara & N. Hirai, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night, Journal of Plant Physiologly, 171, 823-829. https://doi.org/10.1016/j.jplph.2014.01.001
Lancester, J.E., C.E. Lister, P.F. Reay & C.M. Triggs, 1997. Influence of pigment composition on skin color in a wide range of fruit and vegetables, Journal of the American Society for Horticultural Science, 122(4): 594-598. https://doi.org/10.21273/JASHS.122.4.594
Lavdas, E., 2016. Effect of LED-light and temperature on firmness and cell wall metabolism of tomato fruits. Wageningen University, (Unpublished) MSc Thesis, The Netherlands
Lee, Y.J., J.Y. Ha, J.E. Oh & M.S. Cho, 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature, Food Science and Biotechnolgy, 23: 1087. https://doi.org/10.1007/s10068-014-0149-6
Lei, J., N. Zhang, R. Yan, L. Xu, Y. Li & W. Guan, 2016. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage, Chinese Society of Agricultural Engineering, 32(9): 248. https://doi.org/10.11975/j.issn.1002-6819.2016.09.035
Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang & W. Wang, 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities, Scientia Horticulturae, 225: 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
Liu, L.H., D. Zabaras, L.E. Bennett, P. Aguas & B.W. Woonton, 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage, Food Chemistry, 115(2): 495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiawa, M. Yahata, Y. Ikoma & H. Matsumoto, 2015. Effect of the combination of ethylene and red LED light irratiation carotenoid accumulation and carotenogenic gene expression in the flovedo of citrus furit, Postharvest Biology and Technology, 99: 99-104. https://doi.org/10.1016/j.postharvbio.2014.08.002
Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiwa, M. Yahata, Y. Ikoma & H. Matsumoto, 2012. Effect of blue and red light irradiaton of β-cryptoxanthin accumulation in the flavedo of citrus fruits, Journal of Agricultural and Food Chemistry, 60: 197-201. https://doi.org/10.1021/jf203364m
Mcguire, R.G., 1992. Reporting of objective color measurements, HortScience, 27(12):1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
Meena, O.P., V. Bahadur, A. Jagtap & P. Saini, 2015. Genetic analysis of agronomic and biochemical variables among different tomato (Solanum lycopersicum L.) accessions, Journal of Applied and Natural Science, 7 (2): 806–816. https://doi.org/10.31018/jans.v7i2.687
Nájera, C., J.L. Guil-Guerrero, L. Jarquín-Enríquez, J.E. Álvaro & M. Urrestarazu, 2018. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit, Postharvest Biology and Technology, 145: 151-156. https://doi.org/10.1016/j.postharvbio.2018.07.008
Ntagkas, N., E. Woltering, S. Bouras, R.C.H. de Vos, J.A. Dieleman, C.C.S. Nicole, C. Labrie & L.F.M. Marcelis, 2019. Light-induced vitamin C accumulation in tomato fruits in independent of carbohydrate availability, Plants, 8(4):86. https://doi.org/10.3390/plants8040086
Panjai, L., G. Noga, A. Fiebig & M. Hunsche, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes, Scientia Horticulturae, 226: 97-103. https://doi.org/10.1016/j.scienta.2017.08.035
Xu, F., S. Cao, L. Shi & Z. Yang, 2014a. Blue light irradiation affects anthocyanin content and enzymes activities involved in postharvest strawberry fruit, Journal of Agricultural and Food Chemistry, 62: 20. https://doi.org/10.1021/jf501120u
Yamaga, I., T. Takahashi, K. Ishii, M. Kato & Y. Kobayashi, 2015. Antifungal effect of blue LED irradiation on the blue mold Penicillium italicum in Satsuma mandarin fruits, Horticultural Research in Japan, 14(1): 83-87. https://doi.org/10.2503/hrj.14.83
Zhang, J., Y. Zhang, S. Song, W. Su, Y. Hao & H. Liu, 2020. Supplementary red light result in the earlier ripening of tomato fruit depending on ethylene production, Environmental and Experimental Botany,175:104044. https://doi.org/10.1016/j.envexpbot.2020.104044
Žnidarčič, D., D. Ban, M. Oplanić, L. Karić & T. Požrl, 2010. Influence of postharvest temperatures on physicochemical quality of tomatoes (Lycopersicon esculentum Mill.), Journal of Food, Agriculture and Environment, 8(1): 21-25.
Arslan, T., Kasım, R., & Kasım, M. U. (2021). Blue LED lighting improves the postharvest quality of tomato (Solanum lycopersicum L. cv. Zahide F1) fruits. Journal of Agriculture Faculty of Ege University, 58(4), 489-502. https://doi.org/10.20289/zfdergi.893641