Mavi LED ile aydınlatma domates meyvelerinin (Solanum lycopersicum L. cv. Zahide) hasat sonrası kalitesini arttırır
Year 2021,
, 489 - 502, 21.12.2021
Türkay Arslan
Rezzan Kasım
,
Mehmet Ufuk Kasım
Abstract
Amaç: Bu çalışmada kırılma döneminde hasat edilen domates (Solanum lycopersicum L. cv. Zahide) meyvelerinin farklı dalga boylarındaki LED ile aydınlatılmasının hasat sonrası kalitesi üzerine etkileri araştırılmıştır.
Materyal ve Yöntem: Hasat edilen domatesler 500 g polistiren köpük tabaklara yerleştirilmiş ve üzeri streç filmle sarılmıştır. Ardından meyveler 4±1ºC sıcaklık ve %85-90 oransal nem içeren odada, kırmızı (R), mavi (B), yeşil (G) ve beyaz (W) ışık şartları altında 42 gün süreyle depolanmıştır. Karanlıkta depolanan meyveler kontrol (C) olarak kullanılmıştır.
Araştırma Bulguları: R ve W LED uygulamaları, meyvelerin hue açısı, sarılık indeksi ve meyve eti sertliğini arttırmıştır. Mavi LED aydınlatma ayrıca yaşlanmanın geciktiğinin göstergesi olan elektrolit sızıntısını azaltmıştır. Ek olarak mavi ve kırmızı LED aydınlatma meyve çürümelerini geciktirmiştir.
Sonuç: Sonuç olarak, mavi LED aydınlatmanın kırılma döneminde hasat edilen domateslerin hasat sonrası kalitesinin korunmasında kırmızı, beyaz ve yeşil LED ışıktan daha etkili olduğu bulunmuştur.
Supporting Institution
Kocaeli Üniversitesi, Bilimsel Araştırmalar Proje Birimi
References
- Affandi, F.Y., J.C. Verdonk, T. Ouzounis, Y. Ji, E.J. Wotering & R.E. Schouten, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit, Postharvest Biology and Technology, 159: 111019. https://doi.org/10.1016/j.postharvbio.2019.111019
- Azzolini, M., A.H. Jacomino, I.U. Bron, R.A. Kluge & M.A. Schiavinato, 2005. Ripening of "Pedro Sato" guava: a study on its climacteric or non-climacteric nature, Brazilian Journal of Plant Physiology, 17(3): 299-306. https://doi.org/10.1590/S1677-04202005000300004
- Chalker-Scott, L. & L.H. Fuchigami, 2018. “The role of phenolic compounds in plant stress responses, 67-80”. In: Low-Temperature Stress Physiology in Crops. (Ed. P.H. Li), CRC Press Inc., Boca Raton, Florida, 190pp.
- Deng, L., C. Hu, J. Li & M.A. Ritenour, 2016. Effects of blue or red LED light irradiation on postharvest degreening of citrus fruit, American Society for Horticultural Science, ASHS, https://ashs.confex.com/ashs/2016 /webprogram/ Paper24941.html. https://doi.org/10.1021/jf203364m
- Dumvilli, J.C. & S.C. Fry, 2000. Uronic acid derived oligosaccharides: Their biosynthesis degradation and signaling role in non-diseased plant tissues, Plant Physiology Biochemistry, 38: 125-140. https://doi.org/10.1016/S0981-9428(00)00163-7
- Eroğul, D. & B. Özmen, 2020. Determination of storage and shelf life of sweet cherry varieties produced in early region, Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (3):359-366. https://doi.org/10.20289/zfdergi.634609
- Fanwoua, J., G. Vercambre, G. Buck-Sorlin, A. Dieleman, P. de Visser & M. Gènard, 2019. Supplemental LED lighting affects the dynamics of tomato fruit growth and composition, Scientia Horticulturae, 256:108571. https://doi.org/10.1016/j.scienta.2019.108571
- FAOSTAT, 2019. Crops, Tomato Production Data, http://www.fao.org/faostat/en/#data/QC
- Gharezi, M., N. Joshi & E. Sadeghian, 2012. Effect of postharvest treatment on stored cherry tomatoes, Journal of Nutrition & Food Sciences, Sci 2: 8. https://doi.org/10.4172/2155-9600.1000157
- González‐Aguilar, G.A., S. Ruiz-Cruz, H. Soto-Valdez, F. Vázquez‐Ortiz, R. Pacheco-Aguilar & C.Y. Wang, 2005. Biochemical changes of fresh-cut pineapple slices treated with antibrowning agents, International Journal of Food Science & Technology, 40(4): 377-383. https://doi.org/10.1111/j.1365-2621.2004.00940.x
- Gupta, S.D., 2017. Light emitting diodes for agriculture, Smart Lighting, Springer Nature Singapore Pte Ltd., 331p.
- Huang, J.Y., F. Xu & W. Zhou, 2018. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit, Journal of the Science of Food and Agriculture, 98(14):5486–5493. https://doi.org/10.1002/jsfa.9093
- Islam, M.P., T. Morimoto & K. Hatou, 2012. Storage behavior of tomato inside a zero energy cool chamber, Agricultural Engineering International: CIGR Journal, 14(4): 209-217.
- Kanazawa, K., T. Hashimoto, S. Yoshida, P. Sungwon & S. Fukuda, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables, Journal of Agricultural Food Chemistry, 60: 4359-4368. https://doi.org/10.1021/jf300107s
- Karaçalı, İ., 2006. Bahçe Ürünlerinin Muhafazası ve Pazarlanması, Ege Üniversitesi Ziraat Fakültesi Yayınları No: 494, Bornova-İzmir.
- Kasım, M.U. & R. Kasım, 2017. While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions, Journal of Food Processing and Preservation, 41(6): e13266. https://doi.org/10.1111/jfpp.13266
- Kasım, M.U. & R. Kasım, 2015. Postharvest UV-B treatments increased fructose content of tomato (Solanum lycopersicon L., cv. Tayfun F1) harvested at different ripening stages, Food Science and Technology-Brazil, 35(4): 742-749. https://doi.org/10.1590/1678-457X.0008
- Kim, B., H. Lee, J. Kim, K. Kwon, H. Cha & J. Kim, 2011. An effect of light-emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry, Horticulture, Environment, and Biotechnology, 52: 35-39. https://doi.org/10.1007/s13580-011-0189-2
- Kokalj, D., J. Hribar, B. Cigić, E. Zlatić, L. Demšar, L. Sinkovič, H. Šircelj, G. Bizjak & R. Vidrih, 2016. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit, Food Technology and Biotechnology, 54(2): 228-235. https://doi.org/10.17113/ftb.54.02.16.4096
- Kondo, S., H. Tomiyama, A. Rodyoung, K. Okawa, H. Ohara, S. Sugaya, N. Terahara & N. Hirai, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night, Journal of Plant Physiologly, 171, 823-829. https://doi.org/10.1016/j.jplph.2014.01.001
- Lancester, J.E., C.E. Lister, P.F. Reay & C.M. Triggs, 1997. Influence of pigment composition on skin color in a wide range of fruit and vegetables, Journal of the American Society for Horticultural Science, 122(4): 594-598. https://doi.org/10.21273/JASHS.122.4.594
- Lattanzio, V., 2013. “Phenolic compounds: Introduction, 1544-1573”. In: Natural Products, Chapter 50. (Eds. K.G. Ramawat & J.M. Mérillon), Springer-Verlag Berlin Heidelberg.
- Lavdas, E., 2016. Effect of LED-light and temperature on firmness and cell wall metabolism of tomato fruits. Wageningen University, (Unpublished) MSc Thesis, The Netherlands
- Lee, Y.J., J.Y. Ha, J.E. Oh & M.S. Cho, 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature, Food Science and Biotechnolgy, 23: 1087. https://doi.org/10.1007/s10068-014-0149-6
- Lei, J., N. Zhang, R. Yan, L. Xu, Y. Li & W. Guan, 2016. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage, Chinese Society of Agricultural Engineering, 32(9): 248. https://doi.org/10.11975/j.issn.1002-6819.2016.09.035
- Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang & W. Wang, 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities, Scientia Horticulturae, 225: 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
- Liu, L.H., D. Zabaras, L.E. Bennett, P. Aguas & B.W. Woonton, 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage, Food Chemistry, 115(2): 495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
- Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiawa, M. Yahata, Y. Ikoma & H. Matsumoto, 2015. Effect of the combination of ethylene and red LED light irratiation carotenoid accumulation and carotenogenic gene expression in the flovedo of citrus furit, Postharvest Biology and Technology, 99: 99-104. https://doi.org/10.1016/j.postharvbio.2014.08.002
- Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiwa, M. Yahata, Y. Ikoma & H. Matsumoto, 2012. Effect of blue and red light irradiaton of β-cryptoxanthin accumulation in the flavedo of citrus fruits, Journal of Agricultural and Food Chemistry, 60: 197-201. https://doi.org/10.1021/jf203364m
- Mcguire, R.G., 1992. Reporting of objective color measurements, HortScience, 27(12):1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
- Meena, O.P., V. Bahadur, A. Jagtap & P. Saini, 2015. Genetic analysis of agronomic and biochemical variables among different tomato (Solanum lycopersicum L.) accessions, Journal of Applied and Natural Science, 7 (2): 806–816. https://doi.org/10.31018/jans.v7i2.687
- Nájera, C., J.L. Guil-Guerrero, L. Jarquín-Enríquez, J.E. Álvaro & M. Urrestarazu, 2018. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit, Postharvest Biology and Technology, 145: 151-156. https://doi.org/10.1016/j.postharvbio.2018.07.008
- Ntagkas, N., E. Woltering, S. Bouras, R.C.H. de Vos, J.A. Dieleman, C.C.S. Nicole, C. Labrie & L.F.M. Marcelis, 2019. Light-induced vitamin C accumulation in tomato fruits in independent of carbohydrate availability, Plants, 8(4):86. https://doi.org/10.3390/plants8040086
- Panjai, L., G. Noga, A. Fiebig & M. Hunsche, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes, Scientia Horticulturae, 226: 97-103. https://doi.org/10.1016/j.scienta.2017.08.035
- Xu, F., S. Cao, L. Shi & Z. Yang, 2014a. Blue light irradiation affects anthocyanin content and enzymes activities involved in postharvest strawberry fruit, Journal of Agricultural and Food Chemistry, 62: 20. https://doi.org/10.1021/jf501120u
- Yamaga, I., T. Takahashi, K. Ishii, M. Kato & Y. Kobayashi, 2015. Antifungal effect of blue LED irradiation on the blue mold Penicillium italicum in Satsuma mandarin fruits, Horticultural Research in Japan, 14(1): 83-87. https://doi.org/10.2503/hrj.14.83
- Zhang, J., Y. Zhang, S. Song, W. Su, Y. Hao & H. Liu, 2020. Supplementary red light result in the earlier ripening of tomato fruit depending on ethylene production, Environmental and Experimental Botany,175:104044. https://doi.org/10.1016/j.envexpbot.2020.104044
- Žnidarčič, D., D. Ban, M. Oplanić, L. Karić & T. Požrl, 2010. Influence of postharvest temperatures on physicochemical quality of tomatoes (Lycopersicon esculentum Mill.), Journal of Food, Agriculture and Environment, 8(1): 21-25.
Blue LED lighting improves the postharvest quality of tomato (Solanum lycopersicum L. cv. Zahide F1) fruits
Year 2021,
, 489 - 502, 21.12.2021
Türkay Arslan
Rezzan Kasım
,
Mehmet Ufuk Kasım
Abstract
Objective: The objective of this study was to investigate the effects of different wavelengths of LED lighting on the postharvest quality of tomatoes (Solanum lycopersicum L. cv. Zahide) during breaker harvest stages..
Material and Methods: Harvested tomato fruits were placed on 500 g polystyrene foam dishes and wrapped with stretch film. They then were stored in 4±1ºC temperature and 85-90% relative humidity for 42 days under the red (R), blue (B), green (G) and white (W) LED light conditions. The fruits stored in the dark were used as control (C).
Results: R and W LED treatments increased hue angle value, yellowness index value, and fruit firmness of tomatoes Blue LED lighting, also decreased electrolyte leakage that indicates delaying senescence. It was also found that blue and red LED lighting delayed fruit decay.
Conclusion: As a conclusion, it could be satated that the blue LED lighting was found to be more effective than the red, white and green LED light in maintaining the quality of the tomatoes harvested at the breaking stage.
References
- Affandi, F.Y., J.C. Verdonk, T. Ouzounis, Y. Ji, E.J. Wotering & R.E. Schouten, 2020. Far-red light during cultivation induces postharvest cold tolerance in tomato fruit, Postharvest Biology and Technology, 159: 111019. https://doi.org/10.1016/j.postharvbio.2019.111019
- Azzolini, M., A.H. Jacomino, I.U. Bron, R.A. Kluge & M.A. Schiavinato, 2005. Ripening of "Pedro Sato" guava: a study on its climacteric or non-climacteric nature, Brazilian Journal of Plant Physiology, 17(3): 299-306. https://doi.org/10.1590/S1677-04202005000300004
- Chalker-Scott, L. & L.H. Fuchigami, 2018. “The role of phenolic compounds in plant stress responses, 67-80”. In: Low-Temperature Stress Physiology in Crops. (Ed. P.H. Li), CRC Press Inc., Boca Raton, Florida, 190pp.
- Deng, L., C. Hu, J. Li & M.A. Ritenour, 2016. Effects of blue or red LED light irradiation on postharvest degreening of citrus fruit, American Society for Horticultural Science, ASHS, https://ashs.confex.com/ashs/2016 /webprogram/ Paper24941.html. https://doi.org/10.1021/jf203364m
- Dumvilli, J.C. & S.C. Fry, 2000. Uronic acid derived oligosaccharides: Their biosynthesis degradation and signaling role in non-diseased plant tissues, Plant Physiology Biochemistry, 38: 125-140. https://doi.org/10.1016/S0981-9428(00)00163-7
- Eroğul, D. & B. Özmen, 2020. Determination of storage and shelf life of sweet cherry varieties produced in early region, Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (3):359-366. https://doi.org/10.20289/zfdergi.634609
- Fanwoua, J., G. Vercambre, G. Buck-Sorlin, A. Dieleman, P. de Visser & M. Gènard, 2019. Supplemental LED lighting affects the dynamics of tomato fruit growth and composition, Scientia Horticulturae, 256:108571. https://doi.org/10.1016/j.scienta.2019.108571
- FAOSTAT, 2019. Crops, Tomato Production Data, http://www.fao.org/faostat/en/#data/QC
- Gharezi, M., N. Joshi & E. Sadeghian, 2012. Effect of postharvest treatment on stored cherry tomatoes, Journal of Nutrition & Food Sciences, Sci 2: 8. https://doi.org/10.4172/2155-9600.1000157
- González‐Aguilar, G.A., S. Ruiz-Cruz, H. Soto-Valdez, F. Vázquez‐Ortiz, R. Pacheco-Aguilar & C.Y. Wang, 2005. Biochemical changes of fresh-cut pineapple slices treated with antibrowning agents, International Journal of Food Science & Technology, 40(4): 377-383. https://doi.org/10.1111/j.1365-2621.2004.00940.x
- Gupta, S.D., 2017. Light emitting diodes for agriculture, Smart Lighting, Springer Nature Singapore Pte Ltd., 331p.
- Huang, J.Y., F. Xu & W. Zhou, 2018. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit, Journal of the Science of Food and Agriculture, 98(14):5486–5493. https://doi.org/10.1002/jsfa.9093
- Islam, M.P., T. Morimoto & K. Hatou, 2012. Storage behavior of tomato inside a zero energy cool chamber, Agricultural Engineering International: CIGR Journal, 14(4): 209-217.
- Kanazawa, K., T. Hashimoto, S. Yoshida, P. Sungwon & S. Fukuda, 2012. Short photoirradiation induces flavonoid synthesis and increases its production in postharvest vegetables, Journal of Agricultural Food Chemistry, 60: 4359-4368. https://doi.org/10.1021/jf300107s
- Karaçalı, İ., 2006. Bahçe Ürünlerinin Muhafazası ve Pazarlanması, Ege Üniversitesi Ziraat Fakültesi Yayınları No: 494, Bornova-İzmir.
- Kasım, M.U. & R. Kasım, 2017. While continuous white LED lighting increases chlorophyll content (SPAD), green LED light reduces the infection rate of lettuce during storage and shelf-life conditions, Journal of Food Processing and Preservation, 41(6): e13266. https://doi.org/10.1111/jfpp.13266
- Kasım, M.U. & R. Kasım, 2015. Postharvest UV-B treatments increased fructose content of tomato (Solanum lycopersicon L., cv. Tayfun F1) harvested at different ripening stages, Food Science and Technology-Brazil, 35(4): 742-749. https://doi.org/10.1590/1678-457X.0008
- Kim, B., H. Lee, J. Kim, K. Kwon, H. Cha & J. Kim, 2011. An effect of light-emitting diode (LED) irradiation treatment on the amplification of functional components of immature strawberry, Horticulture, Environment, and Biotechnology, 52: 35-39. https://doi.org/10.1007/s13580-011-0189-2
- Kokalj, D., J. Hribar, B. Cigić, E. Zlatić, L. Demšar, L. Sinkovič, H. Šircelj, G. Bizjak & R. Vidrih, 2016. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit, Food Technology and Biotechnology, 54(2): 228-235. https://doi.org/10.17113/ftb.54.02.16.4096
- Kondo, S., H. Tomiyama, A. Rodyoung, K. Okawa, H. Ohara, S. Sugaya, N. Terahara & N. Hirai, 2014. Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light-emitting diode (LED) irradiation at night, Journal of Plant Physiologly, 171, 823-829. https://doi.org/10.1016/j.jplph.2014.01.001
- Lancester, J.E., C.E. Lister, P.F. Reay & C.M. Triggs, 1997. Influence of pigment composition on skin color in a wide range of fruit and vegetables, Journal of the American Society for Horticultural Science, 122(4): 594-598. https://doi.org/10.21273/JASHS.122.4.594
- Lattanzio, V., 2013. “Phenolic compounds: Introduction, 1544-1573”. In: Natural Products, Chapter 50. (Eds. K.G. Ramawat & J.M. Mérillon), Springer-Verlag Berlin Heidelberg.
- Lavdas, E., 2016. Effect of LED-light and temperature on firmness and cell wall metabolism of tomato fruits. Wageningen University, (Unpublished) MSc Thesis, The Netherlands
- Lee, Y.J., J.Y. Ha, J.E. Oh & M.S. Cho, 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature, Food Science and Biotechnolgy, 23: 1087. https://doi.org/10.1007/s10068-014-0149-6
- Lei, J., N. Zhang, R. Yan, L. Xu, Y. Li & W. Guan, 2016. Red and blue LED weak light irradiation maintaining quality of cherry tomatoes during cold storage, Chinese Society of Agricultural Engineering, 32(9): 248. https://doi.org/10.11975/j.issn.1002-6819.2016.09.035
- Li, Y., G. Xin, M. Wei, Q. Shi, F. Yang & W. Wang, 2017. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities, Scientia Horticulturae, 225: 490-497. https://doi.org/10.1016/j.scienta.2017.07.053
- Liu, L.H., D. Zabaras, L.E. Bennett, P. Aguas & B.W. Woonton, 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage, Food Chemistry, 115(2): 495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
- Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiawa, M. Yahata, Y. Ikoma & H. Matsumoto, 2015. Effect of the combination of ethylene and red LED light irratiation carotenoid accumulation and carotenogenic gene expression in the flovedo of citrus furit, Postharvest Biology and Technology, 99: 99-104. https://doi.org/10.1016/j.postharvbio.2014.08.002
- Ma, G., L. Zhang, M. Kato, K. Yamawaki, Y. Kriiwa, M. Yahata, Y. Ikoma & H. Matsumoto, 2012. Effect of blue and red light irradiaton of β-cryptoxanthin accumulation in the flavedo of citrus fruits, Journal of Agricultural and Food Chemistry, 60: 197-201. https://doi.org/10.1021/jf203364m
- Mcguire, R.G., 1992. Reporting of objective color measurements, HortScience, 27(12):1254-1255. https://doi.org/10.21273/HORTSCI.27.12.1254
- Meena, O.P., V. Bahadur, A. Jagtap & P. Saini, 2015. Genetic analysis of agronomic and biochemical variables among different tomato (Solanum lycopersicum L.) accessions, Journal of Applied and Natural Science, 7 (2): 806–816. https://doi.org/10.31018/jans.v7i2.687
- Nájera, C., J.L. Guil-Guerrero, L. Jarquín-Enríquez, J.E. Álvaro & M. Urrestarazu, 2018. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit, Postharvest Biology and Technology, 145: 151-156. https://doi.org/10.1016/j.postharvbio.2018.07.008
- Ntagkas, N., E. Woltering, S. Bouras, R.C.H. de Vos, J.A. Dieleman, C.C.S. Nicole, C. Labrie & L.F.M. Marcelis, 2019. Light-induced vitamin C accumulation in tomato fruits in independent of carbohydrate availability, Plants, 8(4):86. https://doi.org/10.3390/plants8040086
- Panjai, L., G. Noga, A. Fiebig & M. Hunsche, 2017. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes, Scientia Horticulturae, 226: 97-103. https://doi.org/10.1016/j.scienta.2017.08.035
- Xu, F., S. Cao, L. Shi & Z. Yang, 2014a. Blue light irradiation affects anthocyanin content and enzymes activities involved in postharvest strawberry fruit, Journal of Agricultural and Food Chemistry, 62: 20. https://doi.org/10.1021/jf501120u
- Yamaga, I., T. Takahashi, K. Ishii, M. Kato & Y. Kobayashi, 2015. Antifungal effect of blue LED irradiation on the blue mold Penicillium italicum in Satsuma mandarin fruits, Horticultural Research in Japan, 14(1): 83-87. https://doi.org/10.2503/hrj.14.83
- Zhang, J., Y. Zhang, S. Song, W. Su, Y. Hao & H. Liu, 2020. Supplementary red light result in the earlier ripening of tomato fruit depending on ethylene production, Environmental and Experimental Botany,175:104044. https://doi.org/10.1016/j.envexpbot.2020.104044
- Žnidarčič, D., D. Ban, M. Oplanić, L. Karić & T. Požrl, 2010. Influence of postharvest temperatures on physicochemical quality of tomatoes (Lycopersicon esculentum Mill.), Journal of Food, Agriculture and Environment, 8(1): 21-25.