Research Article
BibTex RIS Cite

A Preliminary Study on the Effect of Different Nitrogen Levels on the Biomass Yield and Some Yield Characteristics of Elephantgrass (Miscanthus x giganteus) Used as an Energy Crops

Year 2019, Volume: 56 Issue: 2, 257 - 262, 27.06.2019
https://doi.org/10.20289/zfdergi.481848

Abstract

Objective: This study was conducted to determine the effect of nitrogen levels on the biomass yield and some yield parameters of elephantgrass (Miscanthus x giganteus).

Material and Methods: The experiment was carried out at Ege University, Faculty of Agriculture, Department of Field Crops, Izmir, Turkey, during the summer growth seasons of 2017 as a pot experiment grown under outdoor. In the experiment, elephantgrass rhizomes were planted with different fertilization levels of nitrogen (0, 50, 100, 150, 200, 250, 300 kg·ha-1 N). Some parameters were evaluated in the study such as plant height, stem number, stem diameter, dry biomass yield and ash content.

Results: The effect of nitrogen levels were significant on all parameter tested except stem diameter in the study. Application of the higher rates of N treatments increased the biomass yields compared to the control. Based on these results, 150 kg·ha-1 N was proved the best fertilizer levels for elephantgrass biomass yield under Mediterranean ecological conditions.

References

  • Aktaş, M. ve Ateş, A. 1998. Bitkilerde Beslenme Bozuklukları Nedenleri Tanınmaları. Nurol Matbaacılık A.Ş. Ostim-Ankara, 248 s.
  • Angelini, L.G., Ceccarini, L., O Di Nasso, N.N. and Bonari, E. 2009. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33:635-643.
  • Arundale, R.A., Dohleman, F.G., Voigt, T.B. and Long, S.P. 2014. Nitrogen fertilization does significantly increase yields of stands of Miscanthus x giganteus and Panicum virgatum in multiyear trials in Illinois. Bioenergy Research, 7:408-416.
  • Christian, D.G., Riche, A.B. and Yates, N.E. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvest. Industrial crops & products, 28:237 – 327.
  • Clifton-Brown, J., Stampel, P. and Jones, M. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 10: 509-518.
  • Danalatos, N.G., Archontoulis, S.V. and Mitsios, I. 2007. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N – fertilization in central Greece, Biomass and Bioenergy. 31: 145–152.
  • El Bassam, N. 1998. Energy Plant Species, Their Use and Impact on Environment and Development. James & James Ltd UK, p.321.
  • Ercoli, L., Mariotti, M., Masoni, A. And Bonari, E. 1999. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 63:3-11.
  • Fageria, N.K. 2009. The Use of Nutrients in Crop Plants. CRC Pres, Boca Raton, Florida, New York, p.448.
  • Geren, H., Avcıoğlu, R. ve Kavut, Y.T. 2011. Akdeniz iklim koşullarında Filotu (Miscanthus x giganteus)’nun verim ve verim özellikleri ile silolanabilirliği üzerinde bir ön araştırma. Ege Üniv. Ziraat Fak. Derg., 48 (3): 203-209.
  • Geren, H. 2017. Enerji Bitkileri Tarımı. İzmir Bölgesi Enerji Forumu, EMO Yayın No: GY/2017/676, S: 144-150.
  • Greef, J. and Deuter, M. 1993. Syntaxonomy of Miscanthus x giganteus. Angewandte Botanik, 67: 87-90.
  • Haines, S.A. 2011. Nitrogen and Phosphorus Fertilizer Effects on Establishment of Miscanthus ×giganteus in North Carolina. MSc Thesis, North Carolina State University, 118p.
  • Heaton, E., Voigt, T. and Long, S.P. 2004a. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioener, 27:21 – 30.Heaton, E., Clifton-Brown, J., Voigt,T., Jones, M. and Long, S. 2004b. Miscanthus for renewable energy generation: European union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change, 9: 433-451.
  • Heaton, E., Dohleman, F. and Long, S. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14: 2000-2014.
  • Himken, M., Lammel, J., Neukirchen, D., Czypionka- Krause, U. and Olfs, H.W. 1997. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil, 189: 117–126.
  • Jasinskas, A., Zaltauskas, A. and Kryzeviciene, A. 2008. The investigation of growing and using of tall perennial grasses as energy crops. Biomass and Bioenergy, 32:981–987.
  • Jones, M.B. and Walsh, M. 2007. Miscanthus, for Energy and Fibre. Earthscan UK,p.192.
  • Kantarcı, M.D. 2000. Toprak İlmi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, İ Ü Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Kering, M., Butler, T., Biermacher, J. and Guretzky, J. 2012. Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenerg Res., 5:61–70.
  • Knörzer, H., Hartung, K., Piepho, H.P. and Lewandowski, I. 2013. Assessment of variability in biomass yield and quality: what is an adequate size of sampling area for miscanthus?. GCB Bioenergy, 5:572-579.
  • Kovancı, İ. 1990. Bitki Besleme ve Toprak Verimliliği Ders Notları. Ege Üniversitesi Ziraat Fakültesi Teksir No:107/3, Bornova-İzmir, 286s.
  • Kryževičienė, A., Kadžiulienė, Z., Šarūnaitė, L., Dabkeviċius, Z., Tilvikienė, V. and Šlepetys, J. 2011. Cultivation of Miscanthus x giganteus for biofuel and its tolerance of Lithuania’s climate, Žemdirbystė=Agriculture. vol. 98, No.3, 267-274.
  • Lafferty, J. and Lelley, T. 1994. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding 113: 246-249.
  • Lee, M.S., Wycislo, A., Guo, J., Lee, D.K. and Voigt, T. 2017. Nitrogen fertilization effects on biomass production and yield components of Miscanthus × giganteus. Front PlantSci., 8:544.
  • Lemus, R., Brummer, E.C., Burras, C.L., Moore, K.J., Barker, M.F. and Molstad, N.E. 2008. Effects of N fertilization on biomass yield and quality in large fields of established switchgrass in Southern Iowa, US. Biomass Bioenergy, 32, 1187–1194.
  • Lewandowski, I. and Kicherer, A. 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. European Journal of Agronomy, 6:163- 177.
  • Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Husiman, W. 2000. Miscanthus. European experience with a novel energy crop. Biomass Bioenerg, 19:209–227.
  • Lewandowski, I., Scurlock, J.M.O., Lindvall, E. and Christou, M. 2003a. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25:335 – 361.
  • Lewandowski, I., Clifton-Brown, J.C., Andersson, B., Basch, G., Christian, D.G., Jørgensen, U., Jones, M.B., Riche, A.B., Schwarz, K.U., Tayebi, K. and Teixeira, F. 2003b. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agronomy Journal, 95:1274–1280.
  • Linde-Laursen, I. 1993. Brief report: cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Heraditas, 119: 297-300.
  • MGM. 2017. İzmir-Bornova meteoroloji İstasyonu aylık rasat verileri. Meteoroloji Genel Müdürlüğü, Ankara.
  • Nazlı, R.I., Tansi, V., Öztürk, H.H. and Kusvuran, A. 2018. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Industrial Crops & Products 125:9–23.
  • Parrish, A.S. 2013. Yield Response to Nitrogen Fertilization and Harvest Timing on a Mature Miscanthus×giganteus Stand. MSc Thesis, University of Illinois at Urbana-Champaign, 40p.
  • Pedroso, G.M., Hutmacher, R.B., Putnam, D., Wright, S.D., Six, J., Van Kessel, C. and Linquist, B.A. 2013. Yield and nitrogen management of irrigated switchgrass systems in diverse ecoregions. Agron. J., 105, 311–320.
  • Pedroso, G.M., Hutmacher, R.B., Putnam, D., Six, J., Kessel, C.V. and Linquist, B.A. 2014. Biomass yield and nitrogen use of potential C4 and C3 dedicated energy crops in a Mediterranean climate. Field Crops Research, 161:149-157.
  • Scalici, G. 2013. Physiological and Productive Responses of Miscanthus Genotypes to Different Climatic Constraints in Mediterranean Environment. PhD Thesis, Università Degli Studi Di Catania, 139p.
  • Soha, R.A., Khalil, A.A., Abdelhafez, E.A. and Amer, M. 2015. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Annals of Agricultural Science, 60(2), 317-324.
  • Thomason, W.E., Raun, W.R., Johnson, G.V., Taliaferro, C.M., Freeman, K.W., Wynn, K.J. and Mullen, R.W. 2005. Switchgrass response to harvest frequency and time and rate of applied nitrogen. J. Plant Nutr., 27, 1199–1226.
  • Thompson, K.A., Deen, B. and Dunfield, K.E. 2016. Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems. Soil, 2: 523–535.
  • Wrobel, C., Coulman, B.E. and Smith, D.L. 2009. The potential use of reed canary grass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B - Soil and Plant Science, 59:1-18.
  • Yurtsever N. 1984. Deneysel İstatistik Metotlar, Toprak ve Gübre Araş. Enstitüsü Yayınları No:121, Ankara.
  • Živanović, L., Ikanović, J., Popović2, V., Simić, D., Kolarić, L., Maklenović, V., Bojović, R. and Stevanović, P. 2014. Effect of planting density and supplemental nitrogen nutrition on the productivity of Miscanthus. Romanian Agricultural Research, No.31.

Enerji Bitkisi Olarak Kullanılan Filotu (Miscanthus x giganteus)’nda Farklı Azot Seviyelerinin Biyokütle Verimi ve Bazı Verim Özelliklerine Etkisi Üzerine Bir Ön Araştırma

Year 2019, Volume: 56 Issue: 2, 257 - 262, 27.06.2019
https://doi.org/10.20289/zfdergi.481848

Abstract

Amaç: Bu çalışma, farklı azot seviyelerinin filotu (Miscanthus x giganteus) bitkisinde biyokütle verimi ve bazı verim özellikleri üzerine etkilerini saptamak amacıyla yürütülmüştür.

Materyal ve Yöntem: Araştırma, 2017 yılı yaz yetişme döneminde, Ege Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü, İzmir, Türkiye’de dış ortam koşullarında saksı denemesi olarak gerçekleştirilmiştir. Denemede yedi farklı azot (0, 5, 10, 15, 20, 25, 30 kg/da N) seviyesi içeren toprağa filotu rizomları dikilmiştir. Çalışmada kardeş sayısı, bitki boyu, sap çapı, kuru biyokütle verimi ve ham kül oranı gibi özellikler değerlendirilmiştir.

Sonuç: Azot seviyelerinin sap çapı hariç, incelenen tüm özellikler üzerinde önemli etkilerinin olduğu belirlenmiştir. Azot dozlarının artışıyla biyokütle verimi yükselmiştir. Akdeniz iklim koşullarında dekara 15 kg azot uygulamasının filotunun biyokütle verimini yükselten en iyi gübre seviyesi olduğu belirlenmiştir.

References

  • Aktaş, M. ve Ateş, A. 1998. Bitkilerde Beslenme Bozuklukları Nedenleri Tanınmaları. Nurol Matbaacılık A.Ş. Ostim-Ankara, 248 s.
  • Angelini, L.G., Ceccarini, L., O Di Nasso, N.N. and Bonari, E. 2009. Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance. Biomass and Bioenergy, 33:635-643.
  • Arundale, R.A., Dohleman, F.G., Voigt, T.B. and Long, S.P. 2014. Nitrogen fertilization does significantly increase yields of stands of Miscanthus x giganteus and Panicum virgatum in multiyear trials in Illinois. Bioenergy Research, 7:408-416.
  • Christian, D.G., Riche, A.B. and Yates, N.E. 2008. Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvest. Industrial crops & products, 28:237 – 327.
  • Clifton-Brown, J., Stampel, P. and Jones, M. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 10: 509-518.
  • Danalatos, N.G., Archontoulis, S.V. and Mitsios, I. 2007. Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N – fertilization in central Greece, Biomass and Bioenergy. 31: 145–152.
  • El Bassam, N. 1998. Energy Plant Species, Their Use and Impact on Environment and Development. James & James Ltd UK, p.321.
  • Ercoli, L., Mariotti, M., Masoni, A. And Bonari, E. 1999. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus. Field Crops Research, 63:3-11.
  • Fageria, N.K. 2009. The Use of Nutrients in Crop Plants. CRC Pres, Boca Raton, Florida, New York, p.448.
  • Geren, H., Avcıoğlu, R. ve Kavut, Y.T. 2011. Akdeniz iklim koşullarında Filotu (Miscanthus x giganteus)’nun verim ve verim özellikleri ile silolanabilirliği üzerinde bir ön araştırma. Ege Üniv. Ziraat Fak. Derg., 48 (3): 203-209.
  • Geren, H. 2017. Enerji Bitkileri Tarımı. İzmir Bölgesi Enerji Forumu, EMO Yayın No: GY/2017/676, S: 144-150.
  • Greef, J. and Deuter, M. 1993. Syntaxonomy of Miscanthus x giganteus. Angewandte Botanik, 67: 87-90.
  • Haines, S.A. 2011. Nitrogen and Phosphorus Fertilizer Effects on Establishment of Miscanthus ×giganteus in North Carolina. MSc Thesis, North Carolina State University, 118p.
  • Heaton, E., Voigt, T. and Long, S.P. 2004a. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioener, 27:21 – 30.Heaton, E., Clifton-Brown, J., Voigt,T., Jones, M. and Long, S. 2004b. Miscanthus for renewable energy generation: European union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change, 9: 433-451.
  • Heaton, E., Dohleman, F. and Long, S. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14: 2000-2014.
  • Himken, M., Lammel, J., Neukirchen, D., Czypionka- Krause, U. and Olfs, H.W. 1997. Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil, 189: 117–126.
  • Jasinskas, A., Zaltauskas, A. and Kryzeviciene, A. 2008. The investigation of growing and using of tall perennial grasses as energy crops. Biomass and Bioenergy, 32:981–987.
  • Jones, M.B. and Walsh, M. 2007. Miscanthus, for Energy and Fibre. Earthscan UK,p.192.
  • Kantarcı, M.D. 2000. Toprak İlmi. İÜ Toprak İlmi ve Ekoloji Anabilim Dalı, İ Ü Yayın No. 4261, Orman Fakültesi Yayın No. 462, İstanbul, 420 s.
  • Kering, M., Butler, T., Biermacher, J. and Guretzky, J. 2012. Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenerg Res., 5:61–70.
  • Knörzer, H., Hartung, K., Piepho, H.P. and Lewandowski, I. 2013. Assessment of variability in biomass yield and quality: what is an adequate size of sampling area for miscanthus?. GCB Bioenergy, 5:572-579.
  • Kovancı, İ. 1990. Bitki Besleme ve Toprak Verimliliği Ders Notları. Ege Üniversitesi Ziraat Fakültesi Teksir No:107/3, Bornova-İzmir, 286s.
  • Kryževičienė, A., Kadžiulienė, Z., Šarūnaitė, L., Dabkeviċius, Z., Tilvikienė, V. and Šlepetys, J. 2011. Cultivation of Miscanthus x giganteus for biofuel and its tolerance of Lithuania’s climate, Žemdirbystė=Agriculture. vol. 98, No.3, 267-274.
  • Lafferty, J. and Lelley, T. 1994. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding 113: 246-249.
  • Lee, M.S., Wycislo, A., Guo, J., Lee, D.K. and Voigt, T. 2017. Nitrogen fertilization effects on biomass production and yield components of Miscanthus × giganteus. Front PlantSci., 8:544.
  • Lemus, R., Brummer, E.C., Burras, C.L., Moore, K.J., Barker, M.F. and Molstad, N.E. 2008. Effects of N fertilization on biomass yield and quality in large fields of established switchgrass in Southern Iowa, US. Biomass Bioenergy, 32, 1187–1194.
  • Lewandowski, I. and Kicherer, A. 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. European Journal of Agronomy, 6:163- 177.
  • Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Husiman, W. 2000. Miscanthus. European experience with a novel energy crop. Biomass Bioenerg, 19:209–227.
  • Lewandowski, I., Scurlock, J.M.O., Lindvall, E. and Christou, M. 2003a. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25:335 – 361.
  • Lewandowski, I., Clifton-Brown, J.C., Andersson, B., Basch, G., Christian, D.G., Jørgensen, U., Jones, M.B., Riche, A.B., Schwarz, K.U., Tayebi, K. and Teixeira, F. 2003b. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agronomy Journal, 95:1274–1280.
  • Linde-Laursen, I. 1993. Brief report: cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Heraditas, 119: 297-300.
  • MGM. 2017. İzmir-Bornova meteoroloji İstasyonu aylık rasat verileri. Meteoroloji Genel Müdürlüğü, Ankara.
  • Nazlı, R.I., Tansi, V., Öztürk, H.H. and Kusvuran, A. 2018. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Industrial Crops & Products 125:9–23.
  • Parrish, A.S. 2013. Yield Response to Nitrogen Fertilization and Harvest Timing on a Mature Miscanthus×giganteus Stand. MSc Thesis, University of Illinois at Urbana-Champaign, 40p.
  • Pedroso, G.M., Hutmacher, R.B., Putnam, D., Wright, S.D., Six, J., Van Kessel, C. and Linquist, B.A. 2013. Yield and nitrogen management of irrigated switchgrass systems in diverse ecoregions. Agron. J., 105, 311–320.
  • Pedroso, G.M., Hutmacher, R.B., Putnam, D., Six, J., Kessel, C.V. and Linquist, B.A. 2014. Biomass yield and nitrogen use of potential C4 and C3 dedicated energy crops in a Mediterranean climate. Field Crops Research, 161:149-157.
  • Scalici, G. 2013. Physiological and Productive Responses of Miscanthus Genotypes to Different Climatic Constraints in Mediterranean Environment. PhD Thesis, Università Degli Studi Di Catania, 139p.
  • Soha, R.A., Khalil, A.A., Abdelhafez, E.A. and Amer, M. 2015. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Annals of Agricultural Science, 60(2), 317-324.
  • Thomason, W.E., Raun, W.R., Johnson, G.V., Taliaferro, C.M., Freeman, K.W., Wynn, K.J. and Mullen, R.W. 2005. Switchgrass response to harvest frequency and time and rate of applied nitrogen. J. Plant Nutr., 27, 1199–1226.
  • Thompson, K.A., Deen, B. and Dunfield, K.E. 2016. Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems. Soil, 2: 523–535.
  • Wrobel, C., Coulman, B.E. and Smith, D.L. 2009. The potential use of reed canary grass (Phalaris arundinacea L.) as a biofuel crop. Acta Agriculturae Scandinavica Section B - Soil and Plant Science, 59:1-18.
  • Yurtsever N. 1984. Deneysel İstatistik Metotlar, Toprak ve Gübre Araş. Enstitüsü Yayınları No:121, Ankara.
  • Živanović, L., Ikanović, J., Popović2, V., Simić, D., Kolarić, L., Maklenović, V., Bojović, R. and Stevanović, P. 2014. Effect of planting density and supplemental nitrogen nutrition on the productivity of Miscanthus. Romanian Agricultural Research, No.31.
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tuğçe Özdoğan 0000-0002-1545-4721

Hakan Geren 0000-0003-0426-1120

Publication Date June 27, 2019
Submission Date November 12, 2018
Acceptance Date December 18, 2018
Published in Issue Year 2019 Volume: 56 Issue: 2

Cite

APA Özdoğan, T., & Geren, H. (2019). Enerji Bitkisi Olarak Kullanılan Filotu (Miscanthus x giganteus)’nda Farklı Azot Seviyelerinin Biyokütle Verimi ve Bazı Verim Özelliklerine Etkisi Üzerine Bir Ön Araştırma. Journal of Agriculture Faculty of Ege University, 56(2), 257-262. https://doi.org/10.20289/zfdergi.481848

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.