Research Article
BibTex RIS Cite

Milli Koleksiyon Şaraplık Üzüm Çeşitlerinde Budama Şekli ve Abiyotik Etmenlerin Fizyolojik Aktiviteler Üzerine Etkileri

Year 2020, Volume: 57 Issue: 2, 173 - 184, 30.06.2020
https://doi.org/10.20289/zfdergi.602806

Abstract

Amaç: Bu çalışmada, beş
farklı üzüm çeşidinin farklı budama şekilleri ve iklim şartlarına gösterdiği fizyolojik
tepkileri incelenmiştir.



Materyal ve Metot: Deneme
Tekirdağ Bağcılık Araştırma Enstitüsü araştırma parsellerinde 2018 yılında
yürütülmüştür. Karamenüş, Yayla, Tilkiboğan, Aksıdağan ve Beyaz üzüm çeşitleri
kordon ve guyot budama şekilleriyle terbiye edilerek yetiştirilmiştir. Arazi
şartlarında fotosentez (A), transpirasyon (E), stoma iletkenliği (gs)
ölçümleri yapılmış, çeşitlerin anlık ve gerçek su kullanım randımanları (WUE) hesaplanarak,
çevresel etmenlerle etkileşimleri tespit edilmiştir.



Bulgular: İzlenen fizyolojik
parametrelerin gerçek su kullanım randımanı dışında farklı budama şekillerinden
etkilenmediği,
bu değişkenleri kontrol eden asıl
unsurun mezoklimatik iklim şartları olduğu belirlenmiştir.



Sonuç: Karamenüş ve Beyaz
üzüm çeşitleri ölçüm günlerindeki farklı iklimsel etkilere en etkin biçimde
uyum gösteren çeşitler olarak öne çıkmıştır. Aksıdağan çeşidi yüksek oransal
nem, Tilkiboğan çeşidi yükselen ışık şiddeti, Yayla çeşidi yüksek nem, düşük
ışık şiddeti ve yükselen rüzgar hızında su kullanım etkinliklerini
artırmışlardır.

References

  • Aykas L, Kafa G, Uzun M, Doğan A, Özdemir M, Uğur R, Küçük E, Seymen T, Vurgun H, Balık Hİ, Çiçek M, Sarıçam Ş, Ayar A, Macit İ, Gültekin N, Kesgin M, Özyurt K, Uysal T, Kaya H. 2018. Türkiye arazi gen bankaları. J. of AARI, 28(2): 76-87.
  • Ben Neriah A, Assouline S, Shavit U, Weisbrod N. 2014. Impact of ambient conditions on evaporation from porous media. Water Resources Research 50: 6696–6712.Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31: 491-543.
  • Bota J, Flexas J, Medrano H. 2001. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Annuals of Applied Biology 138: 353-365.
  • Candolfi-Vasconcelos MC, Koblet WG, Howell S, Zweifel W. 1994. Influence of defoliation, rootstock, training system, and leaf position on gas exchange of Pinot Noir grapevines. Am. J. Enol. Vitic. 45: 173-180.
  • Carbonneau A, Bahar E (2009). Vine and Berry Responses to Contrasted Water Fluxes in Ecotron Around ‘Veraison’. Manipulation of Berry Shrivelling and Consequences on Berry Growth, Sugar Loading and Maturation. Proceedings of The 16th International Giesco Symposium, July 12-15, Univ. of California, Davis, Pp. 145-155.
  • Chaves MM. 1984. Photosynthesis and assimilate partition in fruiting and non-fruiting grapevine shoots. Advances in Photosynthesis Research. 4:145-148.
  • Dixon M, Grace J. 1984. Effect of wind on the transpiration of young trees. Annuals of Botany 53: 811–819.
  • Drake BG, Raschke K, Salisbury FB. 1970. Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind Speed. Plant Physiology 46: 324–330.
  • Efe E, Bek Y, Şahin M. 2000. SPSS’te çözümleri ile istatistik yöntemler II, T.C. Kahramanmaraş Sütçü İmam Üniversitesi Rektörlüğü Yayın No:10, Kahramanmaraş.
  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. 2012. An overview of climate change impacts on European viticulture. Food and Energy Security 1(2): 94-110.
  • Ferrini F, Mattii GB, Nicese FP. 1995. Effect of temperature on key physiological responses of grapevine leaf. Amer. J. Enol. Vitic. 46(3): 375-379.
  • Greer DH, Weedon MM. 2012. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis Vinifera L.) vines grown in an irrigated vineyard. Plant Phy. Biochem. 54: 59-69.
  • Kara Z, Sabır A, Doğan O, Eker Ö. 2016. ‘Gök Üzüm’ (Vitis Vinifera L.) çeşidinin ticari potansiyeli ve ampelografik özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, Özel Sayı, 395-410.
  • Katerji N, Daudet FA, Carbonneau A, Ollat N. 1994. Study at the whole plant level of photosynthesis and transpiration of the vine: Comparison of traditional and lyre training systems. Vitis 33: 197-203.
  • Kokutal İ, Bahar E, Bayram S. 2017. Farklı toprak işleme ve yaprak alma uygulamalarının Syrah üzüm çeşidinde su stresi, salkım ve tane özellikleri üzerine etkileri. Ege Üniv. Ziraat Fak. Dergisi, 54 (4): 397-407.
  • Kriedemann PE. 1968. Photosynthesis in vine leaves as a function of light intenstiy, temperature and leaf age. Vitis, 7: 213.
  • Kuiper P. 1961. The effects of environmental factors on the transpiration of leaves, with special reference to stomatal light response, Ph.D. Thesis, Veenman, Wageningen, Proefschriftwageningen.
  • Ledru A, Lebon E, Angélique A, Christophe A, Gallo A, Pilar A, Gago B, Pantin F, Agnès Doligez A, Simonneaua T. 2016. Reduced Night time transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci, 113(32): 8963-8968.
  • Lorenz D, Eichhorn K, Bleiholder H, Klose R, Meier U, Weber E. 1995. Phenological growth stages of the grapevine (Vitis Vinifera L. Ssp. Vinifera)-codes and descriptions according to the extended Bbch scale. Australian Journal of Grape and Wine Research 1: 100-110.
  • Marcon FJL, Hipolito JS, Macedo TA, Kretzschmar AA, Rufato L. 2015. Raleio de cachos sobre o potencial enológico da uva 'Cabernet Franc' em duas safras. Ciência Rural, 45: 2150-2156.
  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A. 2012. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology 416–417: 182–205.
  • Meteoroloji Genel Müdürlüğü (MGM) (2019). Tekirdağ ili genel istatistik verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceleristatistik.aspx?m=TEKIRDAG (Son erişim tarihi 30.07.2019)
  • Miele A, Rizzon LA. 2013. Intensidades da poda seca e do desbaste de cacho na composição da uva Cabernet Sauvignon. Revista Brasileira de Fruticultura, 35: 1081-1092.
  • Petrie PR, Trought MCT, Howell GS 2000. Influence of leaf ageing, leaf area and crop load on photosynthesis, stomatal conductance and senescence of grapevine (Vitis Vinifera L. cv. Pinot Noir) leaves. Vitis, 39: 31-36
  • Poni S, Intrieri C, Sılvestronı O. 1994. Interactions of leaf age, fruiting, and exogenous cytokinins in Sangiovese grapevines under non-irrigated conditions. I. gas exchange. Am. J. Enol. Vitic. 45: 71-78.
  • Reynolds AG, Heuvel JEV. 2009. Influence of grapevine training systems on vine growth and fruit composition: A review. Am. J. Enol. Vitic. 60:3.
  • Schultz HR. 2000. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6: 2-12.
  • Schultz HR, Stoll M. 2010. Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Australian Journal of Grape Wine Research, 16: 4–24.
  • Schymanski SJ, Or D. 2015. Wind increases leaf water use efficiency. Plant, Cell & Environment, 39: 1448-1459.
  • Smart RE. 1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality: A review. American Society for Enology and Viticulture, 36(3)230-239.
  • Uysal T, Boz Y, Yaşasın AS, Gündüz A, Avcı GG, Sağlam M, Öztürk L, Kıran T, Solak E. 2016. Türkiye asma genetik kaynaklarının belirlenmesi, muhafazası ve tanımlanması üzerinde araştırmalar (Milli Koleksiyon Bağı Tesisi). Bahçe, 45:525-529.
  • Valentini G, Allegro G, Pastore C, Colucci E, Magnanini E, Filippetti I. 2019. Climate change and vine training systems: The influence different spatial distribution of shoots may have on sugar accumulation in Sangiovese grapevines. BIO Web of Conferences, 13: 04006.
  • Yayla F. (2008). Milli Koleksiyon Bağındaki Üzüm Çeşitlerinin Şaraplık Özelliklerinin Araştırılması. Tekirdağ Bağcılık Araştırma Enstitüsü Müdürlüğü, Tekirdağ.
Year 2020, Volume: 57 Issue: 2, 173 - 184, 30.06.2020
https://doi.org/10.20289/zfdergi.602806

Abstract

References

  • Aykas L, Kafa G, Uzun M, Doğan A, Özdemir M, Uğur R, Küçük E, Seymen T, Vurgun H, Balık Hİ, Çiçek M, Sarıçam Ş, Ayar A, Macit İ, Gültekin N, Kesgin M, Özyurt K, Uysal T, Kaya H. 2018. Türkiye arazi gen bankaları. J. of AARI, 28(2): 76-87.
  • Ben Neriah A, Assouline S, Shavit U, Weisbrod N. 2014. Impact of ambient conditions on evaporation from porous media. Water Resources Research 50: 6696–6712.Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31: 491-543.
  • Bota J, Flexas J, Medrano H. 2001. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Annuals of Applied Biology 138: 353-365.
  • Candolfi-Vasconcelos MC, Koblet WG, Howell S, Zweifel W. 1994. Influence of defoliation, rootstock, training system, and leaf position on gas exchange of Pinot Noir grapevines. Am. J. Enol. Vitic. 45: 173-180.
  • Carbonneau A, Bahar E (2009). Vine and Berry Responses to Contrasted Water Fluxes in Ecotron Around ‘Veraison’. Manipulation of Berry Shrivelling and Consequences on Berry Growth, Sugar Loading and Maturation. Proceedings of The 16th International Giesco Symposium, July 12-15, Univ. of California, Davis, Pp. 145-155.
  • Chaves MM. 1984. Photosynthesis and assimilate partition in fruiting and non-fruiting grapevine shoots. Advances in Photosynthesis Research. 4:145-148.
  • Dixon M, Grace J. 1984. Effect of wind on the transpiration of young trees. Annuals of Botany 53: 811–819.
  • Drake BG, Raschke K, Salisbury FB. 1970. Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity, and wind Speed. Plant Physiology 46: 324–330.
  • Efe E, Bek Y, Şahin M. 2000. SPSS’te çözümleri ile istatistik yöntemler II, T.C. Kahramanmaraş Sütçü İmam Üniversitesi Rektörlüğü Yayın No:10, Kahramanmaraş.
  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. 2012. An overview of climate change impacts on European viticulture. Food and Energy Security 1(2): 94-110.
  • Ferrini F, Mattii GB, Nicese FP. 1995. Effect of temperature on key physiological responses of grapevine leaf. Amer. J. Enol. Vitic. 46(3): 375-379.
  • Greer DH, Weedon MM. 2012. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis Vinifera L.) vines grown in an irrigated vineyard. Plant Phy. Biochem. 54: 59-69.
  • Kara Z, Sabır A, Doğan O, Eker Ö. 2016. ‘Gök Üzüm’ (Vitis Vinifera L.) çeşidinin ticari potansiyeli ve ampelografik özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, Özel Sayı, 395-410.
  • Katerji N, Daudet FA, Carbonneau A, Ollat N. 1994. Study at the whole plant level of photosynthesis and transpiration of the vine: Comparison of traditional and lyre training systems. Vitis 33: 197-203.
  • Kokutal İ, Bahar E, Bayram S. 2017. Farklı toprak işleme ve yaprak alma uygulamalarının Syrah üzüm çeşidinde su stresi, salkım ve tane özellikleri üzerine etkileri. Ege Üniv. Ziraat Fak. Dergisi, 54 (4): 397-407.
  • Kriedemann PE. 1968. Photosynthesis in vine leaves as a function of light intenstiy, temperature and leaf age. Vitis, 7: 213.
  • Kuiper P. 1961. The effects of environmental factors on the transpiration of leaves, with special reference to stomatal light response, Ph.D. Thesis, Veenman, Wageningen, Proefschriftwageningen.
  • Ledru A, Lebon E, Angélique A, Christophe A, Gallo A, Pilar A, Gago B, Pantin F, Agnès Doligez A, Simonneaua T. 2016. Reduced Night time transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci, 113(32): 8963-8968.
  • Lorenz D, Eichhorn K, Bleiholder H, Klose R, Meier U, Weber E. 1995. Phenological growth stages of the grapevine (Vitis Vinifera L. Ssp. Vinifera)-codes and descriptions according to the extended Bbch scale. Australian Journal of Grape and Wine Research 1: 100-110.
  • Marcon FJL, Hipolito JS, Macedo TA, Kretzschmar AA, Rufato L. 2015. Raleio de cachos sobre o potencial enológico da uva 'Cabernet Franc' em duas safras. Ciência Rural, 45: 2150-2156.
  • McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A. 2012. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology 416–417: 182–205.
  • Meteoroloji Genel Müdürlüğü (MGM) (2019). Tekirdağ ili genel istatistik verileri. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceleristatistik.aspx?m=TEKIRDAG (Son erişim tarihi 30.07.2019)
  • Miele A, Rizzon LA. 2013. Intensidades da poda seca e do desbaste de cacho na composição da uva Cabernet Sauvignon. Revista Brasileira de Fruticultura, 35: 1081-1092.
  • Petrie PR, Trought MCT, Howell GS 2000. Influence of leaf ageing, leaf area and crop load on photosynthesis, stomatal conductance and senescence of grapevine (Vitis Vinifera L. cv. Pinot Noir) leaves. Vitis, 39: 31-36
  • Poni S, Intrieri C, Sılvestronı O. 1994. Interactions of leaf age, fruiting, and exogenous cytokinins in Sangiovese grapevines under non-irrigated conditions. I. gas exchange. Am. J. Enol. Vitic. 45: 71-78.
  • Reynolds AG, Heuvel JEV. 2009. Influence of grapevine training systems on vine growth and fruit composition: A review. Am. J. Enol. Vitic. 60:3.
  • Schultz HR. 2000. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6: 2-12.
  • Schultz HR, Stoll M. 2010. Some critical issues in environmental physiology of grapevines: Future challenges and current limitations. Australian Journal of Grape Wine Research, 16: 4–24.
  • Schymanski SJ, Or D. 2015. Wind increases leaf water use efficiency. Plant, Cell & Environment, 39: 1448-1459.
  • Smart RE. 1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality: A review. American Society for Enology and Viticulture, 36(3)230-239.
  • Uysal T, Boz Y, Yaşasın AS, Gündüz A, Avcı GG, Sağlam M, Öztürk L, Kıran T, Solak E. 2016. Türkiye asma genetik kaynaklarının belirlenmesi, muhafazası ve tanımlanması üzerinde araştırmalar (Milli Koleksiyon Bağı Tesisi). Bahçe, 45:525-529.
  • Valentini G, Allegro G, Pastore C, Colucci E, Magnanini E, Filippetti I. 2019. Climate change and vine training systems: The influence different spatial distribution of shoots may have on sugar accumulation in Sangiovese grapevines. BIO Web of Conferences, 13: 04006.
  • Yayla F. (2008). Milli Koleksiyon Bağındaki Üzüm Çeşitlerinin Şaraplık Özelliklerinin Araştırılması. Tekirdağ Bağcılık Araştırma Enstitüsü Müdürlüğü, Tekirdağ.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Serkan Candar 0000-0002-2608-8691

Tezcan Alço 0000-0002-8521-9268

Mümtaz Ekiz 0000-0003-0171-0605

İlknur Korkutal 0000-0002-8016-9804

Elman Bahar 0000-0002-8842-7695

Publication Date June 30, 2020
Submission Date August 6, 2019
Acceptance Date October 22, 2019
Published in Issue Year 2020 Volume: 57 Issue: 2

Cite

APA Candar, S., Alço, T., Ekiz, M., Korkutal, İ., et al. (2020). Milli Koleksiyon Şaraplık Üzüm Çeşitlerinde Budama Şekli ve Abiyotik Etmenlerin Fizyolojik Aktiviteler Üzerine Etkileri. Journal of Agriculture Faculty of Ege University, 57(2), 173-184. https://doi.org/10.20289/zfdergi.602806

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.