Research Article
BibTex RIS Cite

Solanum habrochaites ve Solanum lycopersicum melezlemesi ile elde edilen popülasyonda morfolojik özelliklerin transgresif açılımı

Year 2023, Volume: 60 Issue: 1, 61 - 66, 01.04.2023
https://doi.org/10.20289/zfdergi.1207916

Abstract

Amaç: Dünya çapında üretim ve tüketim nedeniyle domates (Solanum lycopersicum L.), ekonomik önemi olan sebzelerden biridir. Kültür domatesleri genetik kaynakları arasındaki sınırlı çeşitliliğe sahiptir. Bu nedenle genetik potansiyelin ortaya çıkarılması ve kültür domatesine aktarılması için yabani domates türleri yaygın olarak kullanılmaktadır. Solanum habrochaites, kültür domatesinde meyve kalite özelliklerini geliştirmek için büyük genetik potansiyele sahip yabani domates türlerinden biridir.
Materyal ve Yöntem: S. lycopersicum ve S. habrochaites arasındaki çaprazdan türetilen ayrıştırıcı popülasyonların analizi, bu tür genetik potansiyelin tanımlanması ve introgresyonu için önemlidir. Bu nedenle, bu çalışmada F1, F2 ve F3 popülasyonlarında meyve ağırlığı, meyve uzunluğu ve çapı ile renk parametrelerinin transgresif ayrımı analiz edilmiştir.
Araştırma Bulguları: Meyve ağırlığı için, sadece F3 popülasyonunda transgresif segregasyon gözlenmiştir ve beş tane hat, anne ebeveynden daha yüksek meyve ağırlığına sahip olarak bulunmuştur. S. habrochaites kültür domatesinden daha küçük meyvelere sahip olmasına rağmen, popülasyonlar arasında önemli bir fark bulunmamıştır. Meyve boyu ve çapı için F2 ve F3 popülasyonlarında transgresif segregasyon gözlemlenmesine rağmen popülasyonların ortalama değerleri arasında önemli bir fark bulunmamıştır.
Sonuç: Çalışma, S. habrochaites’ ten elde edilen F3 popülasyonunun daha büyük meyveleri seçmek için yeterli olduğunu göstermiştir.

References

  • Alpert, K. B., S. Grandillo & S. D. Tanksley, 1995. fw 2.2: A major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theoretical and Applied Genetics, 91 (6-7): 994-1000. https://doi.org/10.1007/BF00223911
  • Causse, M., R. Damidaux & P. Rousselle, 2007. “Traditional and Enhanced Breeding for Quality Traits in Tomato, 153-192”. In: Genetic improvement of Solanaceous Crops (Ed. M. K. Razdan) CRC Press, Boca Raton, 658 pp.
  • Ensminger, H. A., E. M. Ensminger, E. J. Kolande & K. R. Robinson, 1994. Food and Nutritio Encyclopedia. 2nd Ed. Vol. l, No. 2, 2371 pp.
  • FAO, 2020. Food and Agriculture Statistics. (Web page: https://www.fao.org/faostat/en/#data/QCL) (Date accessed: November 2022).
  • Frary, A., T. C. Nesbitt, A. Frary, S. Grandillo, E. Van Der Knaap, B. Cong & S. D. Tanksley, 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289 (5476): 85-88. doi: 10.1126/science.289.5476.85.
  • Frusciante, L., P. Carli, M. R. Ercolano, R. Pernice, A. DiMatteo, V. Fogliano & N. Pellegrini, 2007. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51 (5): 609-617. DOI: 10.1002/mnfr.200600158.
  • García-Martínez, S., L. Andreani, M. Garcia-Gusano, F. Geuna & J. J. Ruiz 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 49 (6): 648-656. DOI: 10.1139/g06-016
  • Jones, J. B., Jr. B. Wolf & H. A. Mills 1991. Plant Analysis Handbook. I. Methods of Plant Analysis and Interpratation. Micro-Macro Publishing Inc.,183 Paradise Blvd, Suite 108, Athens Georgia 30607 USA, 213 pp.
  • Kabaş, A. & S. Zengin, 2012. “Tomato variety breeding for greenhouse cultivation, 60-67”. 9. National Vegetable Agriculture Symposium (12-14 September 2012, Konya), 241 s.
  • McGuire, R. G, 1992. Reporting of objective color measurements. HortScience, 27: 1254-1255
  • Rick, C.M., 1995. “Tomato Lycopersicon esculentum (Solanaceae), 452-457’’. In: Evolution of Crop Plants. (Eds. J. Smartt & N.W. Simmonds). Longman Scientific and Technical, London, 523 pp.
  • Rodríguez, G., G. Pratta, R. Zorzoli & L. A. Picardi, 2005. Caracterización de la generación segregante de un híbrido de tomate congenesnor y silvestres. Pesquisa Agropecuária Brasileira, 40 (1): 41-46. https://doi.org/10.1590/S0100-204X2005000100006
  • Sacks, E. J. & D. M. Francis, 2001. Genetic and environmental variation for flesh color of tomato fruit in a population of modern breeding lines. Journal of the American Society for Horticultural Science, 126 (2): 221-226. https://doi.org/10.21273/JASHS.126.2.221
  • Tanksley, S. D., 2004. The genetic developmental and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 16 (1): 181-189. Doi: 10.1105/tpc.018119
  • Top, O., C. Bar, B. Ökmen, D. Y. Özer, D. Rusçuklu, N. Tamer & S. Doğanlar, 2014. Exploration of three Solanum species for improvement of antioxidant traits in tomato. HortScience, 49 (8): 1003-1009. https://doi.org/10.21273/HORTSCI.49.8.1003
  • Türk, B., Y. Nas, İ. Duman, F. Şen & Ö. Tuncay, 2019. The effects of soil type and variety selection on yield and fruit quality characteristics in processing tomato production. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 337-343. Doi: 10.20289/zfdergi.512971

Transgressive segregation of morphological traits in populations derived from cross between Solanum habrochaites and Solanum lycopersicum

Year 2023, Volume: 60 Issue: 1, 61 - 66, 01.04.2023
https://doi.org/10.20289/zfdergi.1207916

Abstract

Objective: Tomato (Solanum lycopersicum L.) is one of the economically important vegetables due to its worldwide economic in both production and consumption. Due to limited genetic diversity among cultivated tomato genetic resources, wild tomato species are commonly used for unlocking the genetic potential and transferring them to cultivated tomato. Solanum habrochaites is one of those wild tomato species that has great genetic potential for improving fruit quality traits in cultivated tomato.
Material and Methods: Analysis of segregating populations derived from the cross between Solanum lycopersicum and Solanum habrochaites is important for the identification and introgression of such genetic potential. Therefore, the present study analyzed transgressive segregation of fruit weight, fruit length, fruit diameter and color parameters in F1, F2 and F3 populations.
Results: For fruit weight, transgressive segregation was observed in just F3 population and five lines had higher fruit weight than maternal parent. Although S. habrochaites had smaller fruits than cultivated tomato, there was no significant difference between populations. Although transgressive segregation was observed in F2 and F3 populations for fruit length and diameter, there was no significant difference between mean values of populations.
Conclusion: The study showed that F3 population is sufficient to select larger fruits derived from S. habrochaites.

References

  • Alpert, K. B., S. Grandillo & S. D. Tanksley, 1995. fw 2.2: A major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theoretical and Applied Genetics, 91 (6-7): 994-1000. https://doi.org/10.1007/BF00223911
  • Causse, M., R. Damidaux & P. Rousselle, 2007. “Traditional and Enhanced Breeding for Quality Traits in Tomato, 153-192”. In: Genetic improvement of Solanaceous Crops (Ed. M. K. Razdan) CRC Press, Boca Raton, 658 pp.
  • Ensminger, H. A., E. M. Ensminger, E. J. Kolande & K. R. Robinson, 1994. Food and Nutritio Encyclopedia. 2nd Ed. Vol. l, No. 2, 2371 pp.
  • FAO, 2020. Food and Agriculture Statistics. (Web page: https://www.fao.org/faostat/en/#data/QCL) (Date accessed: November 2022).
  • Frary, A., T. C. Nesbitt, A. Frary, S. Grandillo, E. Van Der Knaap, B. Cong & S. D. Tanksley, 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289 (5476): 85-88. doi: 10.1126/science.289.5476.85.
  • Frusciante, L., P. Carli, M. R. Ercolano, R. Pernice, A. DiMatteo, V. Fogliano & N. Pellegrini, 2007. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51 (5): 609-617. DOI: 10.1002/mnfr.200600158.
  • García-Martínez, S., L. Andreani, M. Garcia-Gusano, F. Geuna & J. J. Ruiz 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome, 49 (6): 648-656. DOI: 10.1139/g06-016
  • Jones, J. B., Jr. B. Wolf & H. A. Mills 1991. Plant Analysis Handbook. I. Methods of Plant Analysis and Interpratation. Micro-Macro Publishing Inc.,183 Paradise Blvd, Suite 108, Athens Georgia 30607 USA, 213 pp.
  • Kabaş, A. & S. Zengin, 2012. “Tomato variety breeding for greenhouse cultivation, 60-67”. 9. National Vegetable Agriculture Symposium (12-14 September 2012, Konya), 241 s.
  • McGuire, R. G, 1992. Reporting of objective color measurements. HortScience, 27: 1254-1255
  • Rick, C.M., 1995. “Tomato Lycopersicon esculentum (Solanaceae), 452-457’’. In: Evolution of Crop Plants. (Eds. J. Smartt & N.W. Simmonds). Longman Scientific and Technical, London, 523 pp.
  • Rodríguez, G., G. Pratta, R. Zorzoli & L. A. Picardi, 2005. Caracterización de la generación segregante de un híbrido de tomate congenesnor y silvestres. Pesquisa Agropecuária Brasileira, 40 (1): 41-46. https://doi.org/10.1590/S0100-204X2005000100006
  • Sacks, E. J. & D. M. Francis, 2001. Genetic and environmental variation for flesh color of tomato fruit in a population of modern breeding lines. Journal of the American Society for Horticultural Science, 126 (2): 221-226. https://doi.org/10.21273/JASHS.126.2.221
  • Tanksley, S. D., 2004. The genetic developmental and molecular bases of fruit size and shape variation in tomato. The Plant Cell, 16 (1): 181-189. Doi: 10.1105/tpc.018119
  • Top, O., C. Bar, B. Ökmen, D. Y. Özer, D. Rusçuklu, N. Tamer & S. Doğanlar, 2014. Exploration of three Solanum species for improvement of antioxidant traits in tomato. HortScience, 49 (8): 1003-1009. https://doi.org/10.21273/HORTSCI.49.8.1003
  • Türk, B., Y. Nas, İ. Duman, F. Şen & Ö. Tuncay, 2019. The effects of soil type and variety selection on yield and fruit quality characteristics in processing tomato production. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 337-343. Doi: 10.20289/zfdergi.512971
There are 16 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Aylin Kabaş 0000-0003-3983-9965

İbrahim Çelik 0000-0002-6205-0930

Selman Uluışık 0000-0003-0790-6705

Publication Date April 1, 2023
Submission Date November 21, 2022
Acceptance Date February 15, 2023
Published in Issue Year 2023 Volume: 60 Issue: 1

Cite

APA Kabaş, A., Çelik, İ., & Uluışık, S. (2023). Transgressive segregation of morphological traits in populations derived from cross between Solanum habrochaites and Solanum lycopersicum. Journal of Agriculture Faculty of Ege University, 60(1), 61-66. https://doi.org/10.20289/zfdergi.1207916

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.