Research Article
BibTex RIS Cite

The potential of rhizobacteria to control soil-borne fungal pathogens in tomato

Year 2023, Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4, 705 - 721, 05.01.2024
https://doi.org/10.20289/zfdergi.1342790

Abstract

Objective: The aim is to determine the biological control potential of rhizobacteria isolated from the rhizosphere of tomato plants against soil-borne fungi that cause disease in tomato plants.
Materials and Methods: The biocontrol potentials of 10 different rhizobacteria strains against 3 different fungal pathogens (Fusarium oxysporum HMK2-6, Rhizoctonia solani HB-66, Verticillium dahliae YY-14), and their plant growth-promoting characteristics were determined in vitro. In addition, the effects of two selected strains among these strains against R. solani were determined in vivo.
Results: It has been determined that Pseudomonas chlororaphis strain T142 and Bacillus subtilis strain T139 decreased the disease severity of R. solani at rates of 19.9% and 11.9%, respectively. In addition, Bacillus subtilis strain T139 increased the root growth of tomato plants compared to negative control.
Conclusion: Rhizobacteria strains in this study showed promising results for the biological control of R. solani in tomato plants.

Project Number

Yok

References

  • Abdelaziz, A.M., A.H. Hashem, G.S. El-Sayyad, D.A. El-Wakil, S. Selim, D.H.M. Alkhalifah & M.S. Attia, 2023. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Tropical Plant Pathology, 48: 105-127. Doi: 10.1007/S40858-022-00544-7
  • Agrios, G.N., 2005. Plant pathology, 5 th. edn. Elsevier Academic Press, San Diego, USA, 948 pp.
  • Akbaba, M. & H. Özaktan, 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egyptian Journal of Biological Pest Control, 28: 14. Doi: 10.1186/s41938-017-0020-1
  • Akbaba, M. & H. Özaktan, 2021. Kirazda Pseudomonas syringae pv. syringae’nin biyolojik kontrolünde yararlı bakterilerin kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (2): 176-189.
  • Altunlu, H. 2020. Tuz Stresi Altındaki Biberde (Capsicum annuum L.) mikoriza ve rizobakteri uygulamasının bitki gelişimi ve bazı fizyolojik parametreler üzerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 501-510. Doi: 10.20289/zfdergi.655491
  • Aşkın, A., F. Ünal & E. Koca, 2018. Domateste Rhizoctonia solani ve Pythium deliense tarafından neden olunan çökerten hastalığının biyolojik mücadelesinde farklı inokulasyon yöntemlerinin etkinlikliklerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 9 (1): 19-30.
  • Azcón-Aguilar, C. & J. Barea, 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza, 6: 457-464. Doi: 10.1007/s005720050147
  • Bach, E., G. D. dos Santos Seger, G. de Carvalho Fernandes, B. B. Lisboa & L. M. P. Passaglia, 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99: 141-149.
  • Baldani, J.I., V.M. Reis, S.S. Videira, L. H. Boddey & V. L. D. Baldani, 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil 384: 413-431
  • Bargabus, R.L., N.K. Zidack, J.E. Sherwood & B. J. Jacobsen, 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61 (5): 289-298.
  • Ben Abdallah, R.A., H, Jabnoun-Khiareddine, S. Mokni-Tlili, A. Nefzi, S. Medimagh-Saidana & M. Daami-Remadi, 2015. Endophytic Bacillus spp. from wild solanaceae and their antifungal potential against Fusarium oxysporum f. sp. lycopersici elucidated using whole cells, filtrate cultures and organic extracts. Journal of Plant Pathology and Microbiology, 6 (11): 324. Doi: 10.4172/2157-7471.1000324
  • Botha, A., S. Denman, S.C. Lamprecht, M. Mazzola & P. W. Crous, 2003. Characterization and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australasian Plant Pathology, 35: 195-201.
  • Bubici, G., A. D. Marsico, M. D’Amico, M. Amenduni & M. Cirulli, 2013. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Applied Soil Ecology, 72: 128-134.
  • Buhur, N., 2014. Aydın İlinde Çeşitli Kültür Bitkilerinden Elde Edilen Patojen Rhizoctonia spp. İzolatlarının Anastomosis Gruplarının Belirlenmesi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Aydın, 97 s.
  • Caceres, E.A., 1982. Improved Medium for Isolation of Azospirillum spp. Applied and Environmental Microbiology, 44 (4): 990-991.
  • Caulier, S., A. Gillis, G. Colau, F. Licciardi, M. Liépin, N. Desoignies, P. Modrie, A. Legrève, J. Mahillon & C. Bragard, 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 13 (9): 143. Doi: 10.3389/fmicb.2018.00143
  • Cochard, B., B Giroud, J. Crovadore, R. Chablais, L. Arminjon & F. Lefort, 2022. Endophytic PGPR from tomato roots: ısolation, ın vitro characterization and ın vivo evaluation of treated tomatoes (Solanum lycopersicum L.). microorganisms, 10 (4): 765. Doi: 10.3390/microorganisms10040765
  • Çapar, E., 2012. Patateste Farklı Sklerot Düzeylerinin Rhizoctonia solani İnfeksiyonlarındaki Rolünün ve Hastalıkla Mücadelede Yumru İlaçlamalarının Etkinliğinin Araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Adana, 71 s.
  • Çubukçu, N., 2007. Pamuklarda Verticillum Solgunluğu (Verticillium dahliae Kleb.)’na karşı Endofitik Bakterilerle Biyolojik Mücadele Olanakları. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Aydın, 71 s.
  • Davey, M.E., N.C. Caiazza & G. A. O’Toole, 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of bacteriology, 185 (3): 1027-1036. Doi: 10.1128/JB.185.3.1027-1036.2003
  • Demirci, E. & M.T. Döken, 1995. Anastomosis groups of Rhizoctonia solani Kühn and binucleate Rhizoctonia isolates from various crops in Türkiye. The Journal of Turkish Phytopathology, 24 (2): 57-62.
  • Dönmez, M.F., B. Uysal, E. Demirci, S. Ercişli & R. Çakmakçı, 2015. Biological control of root rot disease caused by Rhizoctonia solani Kühn. on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum Hortorum Cultus, 14 (5): 29-40
  • Duff, J.D. & M.C. Firrell, 2021. Biofumigation: A Cover Crop Option 12 Months of the year to manage three soilborne pathogens ailing the Australian vegetable industry. Global Journal of Agricultural Innovation, Research & Development, 8: 104-116.
  • Durak, E.D. & F. Ok, 2019. Van Gölü Havzası’nda domateslerden (Solanum lycopersicum) izole edilen Rhizoctonia solani Kühn’nin anastomosis grupları ve patojenitelerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4): 1908-1915.
  • Eken, C. & S. Tuncer, 2019. Rhizoctonia species and anastomosis groups isolated from tomato and cucumber in Erzincan, Turkey. International Journal of Research in Agriculture and Forestry, 6 (6): 26-31.
  • FAO (Food and Agriculture Organization of the United Nations), 2021. Tomatoes, Production quantities of Tomatoes by country. (https: //www.fao.org/faostat/en/#data/QCL/visualize) (Erişim tarihi: Ağustos 2023)
  • Fiers, M., V. Edel-Hermann, C. Chatot, Y. Le Hingrat, C. Alabouvette & C. Steinberg, 2012. Potato soil-borne diseases. A review. Agronomy for Sustainable Development, 32 (1): 93-132.
  • Gang, S., S. Sharma, M. Saraf, M. Buck & J. Schumacher, (2019). Analysis of Indole-3-acetic Acid (IAA) production in Klebsiella by LC-MS/MS and the salkowski method. Bio-protocol, 9 (9): e3230. Doi: 10.21769/BioProtoc.3230
  • Garbeva, P., J. A. Veen & J.D. Elsas, 2004. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS microbiology ecology, 47 (1): 51-64. Doi: 10.1016/S0168-6496 (03)00234-4
  • Ghosh, S., P. Kanwar & G. Jha, 2017. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Scientific Reports, 7: 41610
  • Glare, T., J. Caradus, W. Gelernter, T. Jackson, N. Keyhani, J. Köhl, P. Marrone, L. Morin & A. Stewart, 2012. Have biopesticides come of age? Trends in Biotechnology, 30 (5): 250-258.
  • Grosch, R., F. Faltin, J. Lottmann, A. Kofoet & G. Berg, 2005. Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Canadian Journal of Microbiology, 51 (4): 345-353.
  • Gupta, S., D. K. Arora & A. K. Srivastava, 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biology and Biochemistry, 27 (8): 1051-1058.
  • Gürel, A. & R. Avcıoğlu, 2001. ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi, 308-313’’. In: Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları (Ed: Özcan, S., E. Gürel & M. Babaoğlu). Selçuk Üniversitesi Vakfı Yayınları, 456 s.
  • Hamza, A., A. Mohamed & A. Derbalah, 2016. Unconventional alternatives for control of tomato root rot caused by Rhizoctonia solani under greenhouse conditions. Journal of Plant Protection Research, 56 (3): 298–305.
  • Hang, N.T.T., S.O. Oh, G.H. Kim, J. S. Hur & Y. J. Koh, 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. The Plant Pathology Journal, 21 (1): 59-63.
  • Hariprasad, P. & S. Umesha, 2007. Induction of systemic resistance in field grown tomato by PGPR against Xanthomonas vesicatoria - incitant of bacterial spot. Journal of Mycology and Plant Pathology, 37 (3): 460-463.
  • Huang, X., N. Zhang, X. Yong, X. Yang & Q. Shen, 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 167 (3): 135-143.
  • Ichielevich-Auster, M., B. Sneh, Y. Koltin & I. Barash, 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica, 13: 103-112.
  • Jambhulkar, P. P., M. Sharma, D. Lakshman & P. Sharma, 2015. “Natural mechanisms of Soil Suppressiveness Against Diseases Caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora, 95-123”. In: Organic Amendments and Soil Suppressiveness in Plant Disease Management (Eds. M. Meghvansi & A. Varma). Soil Biology, Vol 46. Springer, Cham. 531 pp. Doi: 10.1007/978-3-319-23075-75
  • Kang, S. M., R. Radhakrishnan, K. E. Lee, Y. H. You, J. H. Ko, J. H. Kim & I. J. Lee, 2015. Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agriculturae Scandinavica. Section B, Soil and Plant Science, 65: 637-647. Doi: 10.1080/09064710.2015.1040830
  • Keskin, G. & Ö. C. Dölekoğlu, 2004. Domates ve Domates Salçası Durum ve Tahmin Raporu 2004-2005, Yayın No: 123, Eylül 2004, Ankara, 77 s.
  • Kloepper, J. W. & M. N Schroth, 1978. “Plant growth promoting rhizobacteria on radishes, 879-882”, Proceedings of the 4th International Conference on Plant pathogenic Bacteria, Angers, France, 979 pp.
  • Kuan, K. B., Othman, R., Rahim, K. A., and Shamsuddin, Z. H. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11: e0152478. Doi: 10.1371/journal.pone.0152478
  • Kumar, J., D. Singh, P. Ghosh & A. Kumar, 2017. “Endophytic and Epiphytic Modes of Microbial Interactions and Benefits, 227-253”. In: Plant-Microbe Interactions in Agro-Ecological Perspectives (Eds. D. Singh, H. Singh & R. Prabha), Springer, Singapore, 657 pp. Doi: 10.1007/978-981-10-5813-4_12.
  • Kumari, B., M. A Mallick, M.K Solanki, A.C. Solanki, A. Hora & W. Guo, 2019. “Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture, 109-127”. In: Plant Health Under Biotic Stress (Eds. R. Ansari & I. Mahmood). Springer, Singapore, 260 pp. Doi: 10.1007/978-981-13-6040-46
  • Larkin, R. P. & D. R. Fravel, 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease, 82 (9): 1022-1028.
  • Liu, K., M. Newman, J. A. McInroy, C. H. Hu & J. W. Kloepper, 2017. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology, 107: 928-936.
  • Liu, J., G. Gilardi, M. Sanna, M. L. Gullino & A. Garibaldi, 2010. Biocontrol of Fusarium crown and root rot of tomato and growth-promoting effect of bacteria isolated from recycled substrates of soilless crops. Phytopathologia Mediterranea, 49 (2): 163-171.
  • Louden, B. C., D. Haarmann & A. M. Lynne, 2011. Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12 (1): 51-53, Doi: 10.1128/jmbe.v12i1.249.
  • Mahajan, S. & N. Tuteja, 2005. Cold, salinity and drought stress: an overview. Archives of Biochemistry and Biophysics, 444: 139-158.
  • Matei, G. M., S. Matei, V. Mocanu & S. Dumitru, 2017. Microbiological characterization of suppressive forest soil from Enisala. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 46: 341-347.
  • Muyolo, N. G., P. E. Lıpps & A. F. Schmıtthenner, 1993. Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant Disease, 77: 234-238.
  • Nautiyal, C. S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170 (1): 265-270, Doi: 10.1111/j.1574-6968.1999.tb13383.x.
  • Naseem, H & A. Bano, 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9 (1): 689-701, Doi: 10.1080/17429145.2014.902125
  • Özden, E., 2019. The Effect of Pre-sown Treatments on Seed Viability and Physiology in Tomato. AGROFOOD - International Conference on Agronomy and Food Science and Technology (20-21 Haziran 2019, İstanbul), 394-401.
  • Panth, M., S. C. Hassler & F. Baysal-Gurel, 2020. Methods for management of soilborne diseases in crop production. Agriculture, 10 (425): 1-16.
  • Parajuli, M., M. Panth, A. Gonzalez, K. M. Addesso, A. Witcher, T. Simmons & F. Baysal-Gurel, 2022. Cover crop usage for the sustainable management of soilborne diseases in woody ornamental nursery production system. Canadian Journal of Plant Pathology, 44 (3): 432-452.
  • Pavlovici, M., R. Konrad, A. N. Iwobi, A. Sing, U. Busch & I. A. Huber, 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46-53. Doi: 10.1111/J.1574-6968.2011.02479.X
  • Raaijmakers, J. M. & M. Mazzola, 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50: 403-424.
  • Radhakrishnan, R., A. Hashem & E. F. Abd Allah, 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8: 667. Doi: 10.3389/fphys.2017.00667
  • Rani, A., M. N. Bhat & B. P. Singh, 2007. Effect of phylloplane fungi on potato late blight pathogen Phytophthora infestans. Journal of Mycology and Plant Pathology, 37: 413-417.
  • Ravensberg, W. J., 2011. A roadmap to The Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Dordrecht: Springer Science & Business Media, 386 pp.
  • Reynolds, H. L., A. Packer, J. D. Bever & K. Clay, 2003. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84: 2281-2291.
  • Sansinenea, E. & A. Ortiz, 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33: 1523-1538.
  • Safdarpour, F. & G. Khodakaramian, 2019. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. Biological Journal of Microorganism, 7 (28): 77-90.
  • Schaad, N. W., J. B. Jones & W. Chun, 2001. Laboratory guide for the ıdentification of plant pathogenic bacteria. American Phytopathological Society (APS Press). 3rd Edition, St. Paul, 373 pp.
  • Schroth, M. N. & J. G. Hancock, 1982. Disease-suppressive soil and root colonizing bacteria. Science, 216: 1376-1381.
  • Shafi, J., H. Tian, & M. Ji, 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31: 446-459.
  • Shafique, H. A., V. Sultana, S. Ehteshamul-Haque & M. Athar, 2016. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research, 56: 221-230.
  • Sharon, M., S. Freeman, S. Kuninaga & B. Sneh 2007. Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology, 117: 247-265.
  • Stockwell, V. O. & J. P. Stack, 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology, 97: 244-249.
  • Su, X., S. Wu, L. Liu, G. Lu, H. Liu, X. Jin, Y. Wang. H. Guo. C. Wang & H. Cheng, 2021. Potential antagonistic bacteria against Verticillium dahliae isolated from artificially infested nursery. Cells, 10 (12): 3588.
  • Teniz, N., 2020. Van’da Yetiştirilen Domates, Biber ve Kavun Bitkilerinden İzole Edilen Fusarium spp. ve Rhizoctonia spp.’nin Teşhisi ve Patojeniteleri. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Van, 61 s.
  • Townsend, G. K. & J. W. Heuberger, 1943. Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter, 27: 340-343.
  • Tuncer, G. & G. Erdiller, 1990.The identification of Rhizoctonia solani Kühn anastomosis groups isolated from potato and some other crops in Central Anatolia. Journal of Turkish Phytopathology, 19 (2): 89-93.
  • Uysal, A., Ş. Kurt, S. Soylu, E. M. Soylu & M. Kara, 2019. Yaprağı yenen sebzelerdeki mikroorganizma türlerinin MALDI-TOF MS (Matris Destekli Lazer Desorpsiyon/İyonizasyon Uçuş Süresi Kütle Spektrometresi) Tekniği kullanılarak tanılanması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29: 595-603. Doi: 10.29133/YYUTBD.627850
  • Vejan, P., R. Abdullah, T, Khadiran, S. Ismail & A. Nasrulhaq Boyce, 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 21 (5): 573. Doi: 10.3390/molecules21050573.
  • Weller, D. M., J. M. Raaijmakers, B. B. M. Gardener & L. S. Thomashow, 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40: 309-348.
  • Widawati, S & Suliasih, 2019. Potency of nitrogen fixing bacteria isolated from POME disposal pond and their effect on the growth of Caesalpinia pulcherrima (L) Sw, 1-10”, IOP Conference Series: Earth and Environmental Science, 308 (2019). Doi: 10.1088/1755-1315/308/1/012043.
  • Wilson, B. R., A. R. Bogdan, M. Miyazawa, K. Hashimoto & Y. Tsuji, 2016. Siderophores in iron metabolism: From mechanism to therapy potential. Trends in Molecular Medicine, 22: 1077-1090.
  • Yıldırım, E., 2017. Samsun İli Örtüaltı Sebze Yetiştirilen Alanlarda Rhizoctonia spp.’Ne Ait Fungusların Anastomosis Gruplarının, Karakteristik Özelliklerinin ve Patojenitelerinin Belirlenmesi. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Samsun, 88 s.
  • Yildiz, A. & M. T. Döken, 2002. Anastomosis group determination of Rhizoctonia solani Kühn (telemorph: Thanatephorus cucumeris) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars. Journal of Phytopathology, 150 (10): 526-528.
  • Yucel, S., C. Can, M. Yurtmen, R. Cetinkaya-Yildiz & Y. Aysan, 2008. Tomato pathology in Turkey. The European Journal of Plant Science and Biotechnology, 2 (1): 38-47.
  • Zimina, M. I., S. A. Sukhih, O. O. Babich, S. Noskova, A. A. Abrashinaa & A. Y. Prosekov, 2016. Investigating antibiotic activity of the genus Bacillus strains and properties of their bacteriocins in order to develop next-generation pharmaceuticals. Foods and Raw Materials, 4 (2): 92-100.
  • Zohora, U. S., T. Ano & M. S. Rahman, 2016. Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Advances in Microbiology, 6 (6): 424- 431.

Domateste toprak kökenli fungal patojenlerin mücadelesinde rizobakterilerin kullanılma potansiyeli

Year 2023, Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4, 705 - 721, 05.01.2024
https://doi.org/10.20289/zfdergi.1342790

Abstract

Amaç: Domates bitkisinde hastalığa neden olan toprak kökenli funguslara karşı, domates bitkilerinin rizosferinden izole edilen rizobakterilerin biyolojik mücadele potansiyellerinin belirlenmesidir.
Materyal ve Yöntem: 10 farklı rizobakteri izolatının bitki gelişimini teşvik etme ve 3 farklı fungal patojene (Fusarium oxysporum HMK2-6, Rhizoctonia solani HB-66, Verticillium dahliae YY-14) karşı biyokontrol potansiyelleri in vitro koşullarda belirlenmiştir. Ayrıca, aralarından seçilen iki rizobakteri izolatının R. solani’ye karşı etkisi in vivo koşullarda belirlenmiştir.
Araştırma Bulguları: Pseudomonas chlororaphis T142 strainin %19.9 ve Bacillus subtilis T139 straininin %11.9 oranında biyokontrol etki göstererek R. solani’nin hastalık şiddetini azalttığı tespit edilmiştir. Ayrıca Bacillus subtilis T139 izolatı, domates bitkilerinin kök gelişimini kontrole göre artırmıştır.
Sonuç: Çalışmada kullanılan rizobakteri izolatları domateste R. solani’nin biyolojik mücadelesi için ümit vadedici sonuçlar ortaya koymuştur.

Supporting Institution

Yok

Project Number

Yok

Thanks

Bu çalışmada istatistiksel analizler için yardım aldığımız sayın Doç. Dr. Cem TIRINK’a teşekkür ederiz.

References

  • Abdelaziz, A.M., A.H. Hashem, G.S. El-Sayyad, D.A. El-Wakil, S. Selim, D.H.M. Alkhalifah & M.S. Attia, 2023. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Tropical Plant Pathology, 48: 105-127. Doi: 10.1007/S40858-022-00544-7
  • Agrios, G.N., 2005. Plant pathology, 5 th. edn. Elsevier Academic Press, San Diego, USA, 948 pp.
  • Akbaba, M. & H. Özaktan, 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egyptian Journal of Biological Pest Control, 28: 14. Doi: 10.1186/s41938-017-0020-1
  • Akbaba, M. & H. Özaktan, 2021. Kirazda Pseudomonas syringae pv. syringae’nin biyolojik kontrolünde yararlı bakterilerin kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (2): 176-189.
  • Altunlu, H. 2020. Tuz Stresi Altındaki Biberde (Capsicum annuum L.) mikoriza ve rizobakteri uygulamasının bitki gelişimi ve bazı fizyolojik parametreler üzerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (4): 501-510. Doi: 10.20289/zfdergi.655491
  • Aşkın, A., F. Ünal & E. Koca, 2018. Domateste Rhizoctonia solani ve Pythium deliense tarafından neden olunan çökerten hastalığının biyolojik mücadelesinde farklı inokulasyon yöntemlerinin etkinlikliklerinin belirlenmesi. Türkiye Biyolojik Mücadele Dergisi, 9 (1): 19-30.
  • Azcón-Aguilar, C. & J. Barea, 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza, 6: 457-464. Doi: 10.1007/s005720050147
  • Bach, E., G. D. dos Santos Seger, G. de Carvalho Fernandes, B. B. Lisboa & L. M. P. Passaglia, 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99: 141-149.
  • Baldani, J.I., V.M. Reis, S.S. Videira, L. H. Boddey & V. L. D. Baldani, 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil 384: 413-431
  • Bargabus, R.L., N.K. Zidack, J.E. Sherwood & B. J. Jacobsen, 2002. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61 (5): 289-298.
  • Ben Abdallah, R.A., H, Jabnoun-Khiareddine, S. Mokni-Tlili, A. Nefzi, S. Medimagh-Saidana & M. Daami-Remadi, 2015. Endophytic Bacillus spp. from wild solanaceae and their antifungal potential against Fusarium oxysporum f. sp. lycopersici elucidated using whole cells, filtrate cultures and organic extracts. Journal of Plant Pathology and Microbiology, 6 (11): 324. Doi: 10.4172/2157-7471.1000324
  • Botha, A., S. Denman, S.C. Lamprecht, M. Mazzola & P. W. Crous, 2003. Characterization and pathogenicity of Rhizoctonia isolates associated with black root rot of strawberries in the Western Cape Province, South Africa. Australasian Plant Pathology, 35: 195-201.
  • Bubici, G., A. D. Marsico, M. D’Amico, M. Amenduni & M. Cirulli, 2013. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant. Applied Soil Ecology, 72: 128-134.
  • Buhur, N., 2014. Aydın İlinde Çeşitli Kültür Bitkilerinden Elde Edilen Patojen Rhizoctonia spp. İzolatlarının Anastomosis Gruplarının Belirlenmesi. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Aydın, 97 s.
  • Caceres, E.A., 1982. Improved Medium for Isolation of Azospirillum spp. Applied and Environmental Microbiology, 44 (4): 990-991.
  • Caulier, S., A. Gillis, G. Colau, F. Licciardi, M. Liépin, N. Desoignies, P. Modrie, A. Legrève, J. Mahillon & C. Bragard, 2018. Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 13 (9): 143. Doi: 10.3389/fmicb.2018.00143
  • Cochard, B., B Giroud, J. Crovadore, R. Chablais, L. Arminjon & F. Lefort, 2022. Endophytic PGPR from tomato roots: ısolation, ın vitro characterization and ın vivo evaluation of treated tomatoes (Solanum lycopersicum L.). microorganisms, 10 (4): 765. Doi: 10.3390/microorganisms10040765
  • Çapar, E., 2012. Patateste Farklı Sklerot Düzeylerinin Rhizoctonia solani İnfeksiyonlarındaki Rolünün ve Hastalıkla Mücadelede Yumru İlaçlamalarının Etkinliğinin Araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Adana, 71 s.
  • Çubukçu, N., 2007. Pamuklarda Verticillum Solgunluğu (Verticillium dahliae Kleb.)’na karşı Endofitik Bakterilerle Biyolojik Mücadele Olanakları. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Aydın, 71 s.
  • Davey, M.E., N.C. Caiazza & G. A. O’Toole, 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of bacteriology, 185 (3): 1027-1036. Doi: 10.1128/JB.185.3.1027-1036.2003
  • Demirci, E. & M.T. Döken, 1995. Anastomosis groups of Rhizoctonia solani Kühn and binucleate Rhizoctonia isolates from various crops in Türkiye. The Journal of Turkish Phytopathology, 24 (2): 57-62.
  • Dönmez, M.F., B. Uysal, E. Demirci, S. Ercişli & R. Çakmakçı, 2015. Biological control of root rot disease caused by Rhizoctonia solani Kühn. on potato and bean using antagonist bacteria. Acta Scientiarum Polonorum Hortorum Cultus, 14 (5): 29-40
  • Duff, J.D. & M.C. Firrell, 2021. Biofumigation: A Cover Crop Option 12 Months of the year to manage three soilborne pathogens ailing the Australian vegetable industry. Global Journal of Agricultural Innovation, Research & Development, 8: 104-116.
  • Durak, E.D. & F. Ok, 2019. Van Gölü Havzası’nda domateslerden (Solanum lycopersicum) izole edilen Rhizoctonia solani Kühn’nin anastomosis grupları ve patojenitelerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9 (4): 1908-1915.
  • Eken, C. & S. Tuncer, 2019. Rhizoctonia species and anastomosis groups isolated from tomato and cucumber in Erzincan, Turkey. International Journal of Research in Agriculture and Forestry, 6 (6): 26-31.
  • FAO (Food and Agriculture Organization of the United Nations), 2021. Tomatoes, Production quantities of Tomatoes by country. (https: //www.fao.org/faostat/en/#data/QCL/visualize) (Erişim tarihi: Ağustos 2023)
  • Fiers, M., V. Edel-Hermann, C. Chatot, Y. Le Hingrat, C. Alabouvette & C. Steinberg, 2012. Potato soil-borne diseases. A review. Agronomy for Sustainable Development, 32 (1): 93-132.
  • Gang, S., S. Sharma, M. Saraf, M. Buck & J. Schumacher, (2019). Analysis of Indole-3-acetic Acid (IAA) production in Klebsiella by LC-MS/MS and the salkowski method. Bio-protocol, 9 (9): e3230. Doi: 10.21769/BioProtoc.3230
  • Garbeva, P., J. A. Veen & J.D. Elsas, 2004. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS microbiology ecology, 47 (1): 51-64. Doi: 10.1016/S0168-6496 (03)00234-4
  • Ghosh, S., P. Kanwar & G. Jha, 2017. Alterations in rice chloroplast integrity, photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Scientific Reports, 7: 41610
  • Glare, T., J. Caradus, W. Gelernter, T. Jackson, N. Keyhani, J. Köhl, P. Marrone, L. Morin & A. Stewart, 2012. Have biopesticides come of age? Trends in Biotechnology, 30 (5): 250-258.
  • Grosch, R., F. Faltin, J. Lottmann, A. Kofoet & G. Berg, 2005. Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Canadian Journal of Microbiology, 51 (4): 345-353.
  • Gupta, S., D. K. Arora & A. K. Srivastava, 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biology and Biochemistry, 27 (8): 1051-1058.
  • Gürel, A. & R. Avcıoğlu, 2001. ‘‘Bitkilerde Strese Dayanıklılık Fizyolojisi, 308-313’’. In: Bitki Biyoteknolojisi II, Genetik Mühendisliği ve Uygulamaları (Ed: Özcan, S., E. Gürel & M. Babaoğlu). Selçuk Üniversitesi Vakfı Yayınları, 456 s.
  • Hamza, A., A. Mohamed & A. Derbalah, 2016. Unconventional alternatives for control of tomato root rot caused by Rhizoctonia solani under greenhouse conditions. Journal of Plant Protection Research, 56 (3): 298–305.
  • Hang, N.T.T., S.O. Oh, G.H. Kim, J. S. Hur & Y. J. Koh, 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. The Plant Pathology Journal, 21 (1): 59-63.
  • Hariprasad, P. & S. Umesha, 2007. Induction of systemic resistance in field grown tomato by PGPR against Xanthomonas vesicatoria - incitant of bacterial spot. Journal of Mycology and Plant Pathology, 37 (3): 460-463.
  • Huang, X., N. Zhang, X. Yong, X. Yang & Q. Shen, 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 167 (3): 135-143.
  • Ichielevich-Auster, M., B. Sneh, Y. Koltin & I. Barash, 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica, 13: 103-112.
  • Jambhulkar, P. P., M. Sharma, D. Lakshman & P. Sharma, 2015. “Natural mechanisms of Soil Suppressiveness Against Diseases Caused by Fusarium, Rhizoctonia, Pythium, and Phytophthora, 95-123”. In: Organic Amendments and Soil Suppressiveness in Plant Disease Management (Eds. M. Meghvansi & A. Varma). Soil Biology, Vol 46. Springer, Cham. 531 pp. Doi: 10.1007/978-3-319-23075-75
  • Kang, S. M., R. Radhakrishnan, K. E. Lee, Y. H. You, J. H. Ko, J. H. Kim & I. J. Lee, 2015. Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agriculturae Scandinavica. Section B, Soil and Plant Science, 65: 637-647. Doi: 10.1080/09064710.2015.1040830
  • Keskin, G. & Ö. C. Dölekoğlu, 2004. Domates ve Domates Salçası Durum ve Tahmin Raporu 2004-2005, Yayın No: 123, Eylül 2004, Ankara, 77 s.
  • Kloepper, J. W. & M. N Schroth, 1978. “Plant growth promoting rhizobacteria on radishes, 879-882”, Proceedings of the 4th International Conference on Plant pathogenic Bacteria, Angers, France, 979 pp.
  • Kuan, K. B., Othman, R., Rahim, K. A., and Shamsuddin, Z. H. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11: e0152478. Doi: 10.1371/journal.pone.0152478
  • Kumar, J., D. Singh, P. Ghosh & A. Kumar, 2017. “Endophytic and Epiphytic Modes of Microbial Interactions and Benefits, 227-253”. In: Plant-Microbe Interactions in Agro-Ecological Perspectives (Eds. D. Singh, H. Singh & R. Prabha), Springer, Singapore, 657 pp. Doi: 10.1007/978-981-10-5813-4_12.
  • Kumari, B., M. A Mallick, M.K Solanki, A.C. Solanki, A. Hora & W. Guo, 2019. “Plant Growth Promoting Rhizobacteria (PGPR): Modern Prospects for Sustainable Agriculture, 109-127”. In: Plant Health Under Biotic Stress (Eds. R. Ansari & I. Mahmood). Springer, Singapore, 260 pp. Doi: 10.1007/978-981-13-6040-46
  • Larkin, R. P. & D. R. Fravel, 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Disease, 82 (9): 1022-1028.
  • Liu, K., M. Newman, J. A. McInroy, C. H. Hu & J. W. Kloepper, 2017. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology, 107: 928-936.
  • Liu, J., G. Gilardi, M. Sanna, M. L. Gullino & A. Garibaldi, 2010. Biocontrol of Fusarium crown and root rot of tomato and growth-promoting effect of bacteria isolated from recycled substrates of soilless crops. Phytopathologia Mediterranea, 49 (2): 163-171.
  • Louden, B. C., D. Haarmann & A. M. Lynne, 2011. Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12 (1): 51-53, Doi: 10.1128/jmbe.v12i1.249.
  • Mahajan, S. & N. Tuteja, 2005. Cold, salinity and drought stress: an overview. Archives of Biochemistry and Biophysics, 444: 139-158.
  • Matei, G. M., S. Matei, V. Mocanu & S. Dumitru, 2017. Microbiological characterization of suppressive forest soil from Enisala. Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series, 46: 341-347.
  • Muyolo, N. G., P. E. Lıpps & A. F. Schmıtthenner, 1993. Reactions of dry bean, lima bean, and soybean cultivars to Rhizoctonia root and hypocotyl rot and web blight. Plant Disease, 77: 234-238.
  • Nautiyal, C. S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170 (1): 265-270, Doi: 10.1111/j.1574-6968.1999.tb13383.x.
  • Naseem, H & A. Bano, 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9 (1): 689-701, Doi: 10.1080/17429145.2014.902125
  • Özden, E., 2019. The Effect of Pre-sown Treatments on Seed Viability and Physiology in Tomato. AGROFOOD - International Conference on Agronomy and Food Science and Technology (20-21 Haziran 2019, İstanbul), 394-401.
  • Panth, M., S. C. Hassler & F. Baysal-Gurel, 2020. Methods for management of soilborne diseases in crop production. Agriculture, 10 (425): 1-16.
  • Parajuli, M., M. Panth, A. Gonzalez, K. M. Addesso, A. Witcher, T. Simmons & F. Baysal-Gurel, 2022. Cover crop usage for the sustainable management of soilborne diseases in woody ornamental nursery production system. Canadian Journal of Plant Pathology, 44 (3): 432-452.
  • Pavlovici, M., R. Konrad, A. N. Iwobi, A. Sing, U. Busch & I. A. Huber, 2012. A dual approach employing MALDI-TOF MS and real-time PCR for fast species identification within the Enterobacter cloacae complex. FEMS Microbiology Letters, 328: 46-53. Doi: 10.1111/J.1574-6968.2011.02479.X
  • Raaijmakers, J. M. & M. Mazzola, 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50: 403-424.
  • Radhakrishnan, R., A. Hashem & E. F. Abd Allah, 2017. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8: 667. Doi: 10.3389/fphys.2017.00667
  • Rani, A., M. N. Bhat & B. P. Singh, 2007. Effect of phylloplane fungi on potato late blight pathogen Phytophthora infestans. Journal of Mycology and Plant Pathology, 37: 413-417.
  • Ravensberg, W. J., 2011. A roadmap to The Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Dordrecht: Springer Science & Business Media, 386 pp.
  • Reynolds, H. L., A. Packer, J. D. Bever & K. Clay, 2003. Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84: 2281-2291.
  • Sansinenea, E. & A. Ortiz, 2011. Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33: 1523-1538.
  • Safdarpour, F. & G. Khodakaramian, 2019. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. Biological Journal of Microorganism, 7 (28): 77-90.
  • Schaad, N. W., J. B. Jones & W. Chun, 2001. Laboratory guide for the ıdentification of plant pathogenic bacteria. American Phytopathological Society (APS Press). 3rd Edition, St. Paul, 373 pp.
  • Schroth, M. N. & J. G. Hancock, 1982. Disease-suppressive soil and root colonizing bacteria. Science, 216: 1376-1381.
  • Shafi, J., H. Tian, & M. Ji, 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31: 446-459.
  • Shafique, H. A., V. Sultana, S. Ehteshamul-Haque & M. Athar, 2016. Management of soil-borne diseases of organic vegetables. Journal of Plant Protection Research, 56: 221-230.
  • Sharon, M., S. Freeman, S. Kuninaga & B. Sneh 2007. Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. European Journal of Plant Pathology, 117: 247-265.
  • Stockwell, V. O. & J. P. Stack, 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology, 97: 244-249.
  • Su, X., S. Wu, L. Liu, G. Lu, H. Liu, X. Jin, Y. Wang. H. Guo. C. Wang & H. Cheng, 2021. Potential antagonistic bacteria against Verticillium dahliae isolated from artificially infested nursery. Cells, 10 (12): 3588.
  • Teniz, N., 2020. Van’da Yetiştirilen Domates, Biber ve Kavun Bitkilerinden İzole Edilen Fusarium spp. ve Rhizoctonia spp.’nin Teşhisi ve Patojeniteleri. Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Bitki Koruma Anabilim Dalı, (Basılmamış) Yüksek Lisans Tezi, Van, 61 s.
  • Townsend, G. K. & J. W. Heuberger, 1943. Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter, 27: 340-343.
  • Tuncer, G. & G. Erdiller, 1990.The identification of Rhizoctonia solani Kühn anastomosis groups isolated from potato and some other crops in Central Anatolia. Journal of Turkish Phytopathology, 19 (2): 89-93.
  • Uysal, A., Ş. Kurt, S. Soylu, E. M. Soylu & M. Kara, 2019. Yaprağı yenen sebzelerdeki mikroorganizma türlerinin MALDI-TOF MS (Matris Destekli Lazer Desorpsiyon/İyonizasyon Uçuş Süresi Kütle Spektrometresi) Tekniği kullanılarak tanılanması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29: 595-603. Doi: 10.29133/YYUTBD.627850
  • Vejan, P., R. Abdullah, T, Khadiran, S. Ismail & A. Nasrulhaq Boyce, 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules, 21 (5): 573. Doi: 10.3390/molecules21050573.
  • Weller, D. M., J. M. Raaijmakers, B. B. M. Gardener & L. S. Thomashow, 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40: 309-348.
  • Widawati, S & Suliasih, 2019. Potency of nitrogen fixing bacteria isolated from POME disposal pond and their effect on the growth of Caesalpinia pulcherrima (L) Sw, 1-10”, IOP Conference Series: Earth and Environmental Science, 308 (2019). Doi: 10.1088/1755-1315/308/1/012043.
  • Wilson, B. R., A. R. Bogdan, M. Miyazawa, K. Hashimoto & Y. Tsuji, 2016. Siderophores in iron metabolism: From mechanism to therapy potential. Trends in Molecular Medicine, 22: 1077-1090.
  • Yıldırım, E., 2017. Samsun İli Örtüaltı Sebze Yetiştirilen Alanlarda Rhizoctonia spp.’Ne Ait Fungusların Anastomosis Gruplarının, Karakteristik Özelliklerinin ve Patojenitelerinin Belirlenmesi. Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Samsun, 88 s.
  • Yildiz, A. & M. T. Döken, 2002. Anastomosis group determination of Rhizoctonia solani Kühn (telemorph: Thanatephorus cucumeris) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars. Journal of Phytopathology, 150 (10): 526-528.
  • Yucel, S., C. Can, M. Yurtmen, R. Cetinkaya-Yildiz & Y. Aysan, 2008. Tomato pathology in Turkey. The European Journal of Plant Science and Biotechnology, 2 (1): 38-47.
  • Zimina, M. I., S. A. Sukhih, O. O. Babich, S. Noskova, A. A. Abrashinaa & A. Y. Prosekov, 2016. Investigating antibiotic activity of the genus Bacillus strains and properties of their bacteriocins in order to develop next-generation pharmaceuticals. Foods and Raw Materials, 4 (2): 92-100.
  • Zohora, U. S., T. Ano & M. S. Rahman, 2016. Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Advances in Microbiology, 6 (6): 424- 431.
There are 86 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Articles
Authors

Mustafa Akbaba 0000-0002-7029-9461

Tuba Genc 0000-0003-2022-0193

Project Number Yok
Early Pub Date December 28, 2023
Publication Date January 5, 2024
Submission Date August 14, 2023
Acceptance Date November 27, 2023
Published in Issue Year 2023 Volume: 60 Issue: 4 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 4

Cite

APA Akbaba, M., & Genc, T. (2024). Domateste toprak kökenli fungal patojenlerin mücadelesinde rizobakterilerin kullanılma potansiyeli. Journal of Agriculture Faculty of Ege University, 60(4), 705-721. https://doi.org/10.20289/zfdergi.1342790

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.