Research Article
BibTex RIS Cite

Bazı çakal eriği (Prunus spinosa L.) genotiplerinin kimyasal bileşiminin belirlenmesi

Year 2024, Volume: 61 Issue: 4, 401 - 412, 16.12.2024
https://doi.org/10.20289/zfdergi.1425197

Abstract

Amaç: Bu çalışmada, Konya iline bağlı Seydişehir ilçesinde yetişen seçilmiş beş Prunus spinosa L. genotipinin meyvelerindeki kimyasal ve fonksiyonel özellikleri analiz edilerek genotipler arasındaki farklılıklar belirlenmiştir.
Materyal ve Yöntem: Araştırmada, meyve ağırlığı, perikarp rengi, et rengi gibi meyve özellikleri belirlenmiş, suda çözünebilir kuru madde (SÇKM), pH, titre edilebilir asitlik, toplam fenol içeriği, antioksidan seviyesi ve uçucu organik bileşikler analiz edilmiştir. PCA analizi genotipler arasındaki varyasyonları ayırt etmek için kullanılmıştır.
Araştırma Bulguları: Beş farklı çakal eriği genotipinin meyve özellikleri incelenmiş ve varyasyonları ortaya konmuştur. Meyve ağırlığı 1.31 g-2.67 g arasında değişmiştir. SÇKM %11.9-%13.2 arasında tespit edilmiştir. pH değerleri 3.35-4.22 arasında, titre edilebilir asitlik ise %0.83-%1.30 arasında belirlenmiştir. Toplam fenol içeriği 356.92 mg GAE/100 g ile 387.56 mg GAE/100 g arasında değişmiştir. Toplam antioksidan miktarları %65.13 ile %77.06 arasında belirlenmiştir. Uçucu organik bileşik analizinde otuz farklı bileşik tespit edilmiş, bunlar arasında yedi farklı asit belirlenmiştir.
Sonuç: Çakal eriği genotipleri arasında önemli çeşitlilik tespit edilmiştir. İstatistiksel analizler, B01T genotipinin en yüksek toplam fenol içeriğine, B05T genotipinin ise en yüksek antioksidan seviyesine sahip olduğunu göstermiştir. Çakal eriğinde çeşitli uçucu organik bileşiklerin bulunması, kimyasal profilinin çeşitliliğini göstermektedir. Bulgular, çakal eriğinin sağlık için faydalı bir potansiyele sahip olduğunu ve sağlık odaklı gıda ürünlerinin geliştirilmesinde değerli bir aday olduğunu desteklemiştir.

References

  • Aparajita, M., M. Juan Pedro & A. Itziar, 2002. Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. American Journal of Botany, 89: 1223-1228.
  • Argon, Z.Ü., N. İlhan, A. Gökyer, S.B. Öztürk & B. Koparal, 2019. Phytochemical evaluation of Morus alba seeds and cold pressed oil. Journal of the Turkish Chemical Society Section A: Chemistry, 6 (1): 41-50.
  • Ayla, Ş., M.Y. Günal, A.A. Sayın Şakul, Ö. Biçeroğlu, E.M. Özdemir, M.E. Okur, D.Ç. Polat, N. Üstündağ Okur & B.E. Bilgiç, 2017. Effects of Prunus spinosa L. fruits on experimental wound healing. Medeniyet Medical Journal, 32: 152-158.
  • Baysan, E.V., 2021. Optimization of Phenolics Substance and Antioxidant Activities, in The Extraction from Prunus spinosa L. Fruits by Response Surface Methodology. Health Science Institute, Bezmialem Vakıf University, (Unpublished) MSc Thesis, İstanbul, Türkiye, 80 pp.
  • Borkowski, B., J. Lutomski, E. Skrzydlewska & B. Zygmunt, 1994. Rosliny lecznicze w fitoterapii, IRiPZ, Poznan, 470-471.
  • Browics, K., 1972. "Prunus, 8-12". In: Flora of Turkey and East Aegean Islands. (Eds. P.H. Davis, J. Cullen & M.J.E. Coode Davis), University Press, Edinburgh, 568 pp.
  • Brunton, N.P., D.A. Cronin, F.J. Monahan & R. Durcan, 2000. A comparison of solid-phase microextraction (SPME) fibres for measurement of hexanal and pentanal in cooked turkey. Food Chemistry, 68 (3): 339-345.
  • Burits, M. & F. Bučar, 2000. Antioxidative activity of Nigella sativa essential oil. Phytotherapy Research, 14: 323-328.
  • Chan, W.K., L.T.H. Tan, K.G. Chan, L.H. Lee & B.H. Goh, 2016. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21 (5): 529.
  • Chitwood, D.J., 2002. Phytochemical based strategies for nematode control. Annual Review of Phytopathology. Annual Reviews, 40 (1): 221-249.
  • Claudia, G.C.F., I.M. Elena & C.S. Niculina, 2017. Some fruit characteristics of blackthorn (Prunus spinosa L.). Annals of The University of Craiova, Vol. 22 (58): 129-136.
  • Elez-Garofulić, I., Z. Zorić, S. Pedisić, M. Brnčić & V. Dragović Uzelac, 2018. UPLC-MS2 profiling of blackthorn flower polyphenols isolated by ultrasound-assisted extraction. Journal of Food Science, 83 (11): 2782–2789.
  • Erturk, Y., S. Ercisli & M. Tosun, 2009. Physico-chemical characteristics of wild plum fruits (Prunus spinosa L.). International Journal of Plant Production, 3 (3): 89-92.
  • Fraternale, D., L. Giamperi, A. Bucchini, P. Sestili, M. Paolillo & D. Ricci, 2009. Prunus spinosa fresh fruit juice: Antioxidant activity in cell-free and cellular systems. Natural Product Communications, 4: 1665-1670.
  • Hatano, T., R. Edamatsu, A. Mori, Y. Fujita, T. Yasuhara, T. Yoshida & T. Okuda, 1989. Effects of the interaction of tannins with co-existing substances. VI. effects of tannins and related polyphenols on superoxide anion radical, and on 1,1- diphenyl-pierylhydrazyl radical Chemical and Pharmaceutical Bulletin, 37: 2016-2021.
  • Karakas, N., M.E. Okur, I. Ozturk, S. Ayla, A.E. Karadag & D.Ç. Polat, 2019. Antioxidant activity of blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeniyet Medical Journal, 34 (3): 297.
  • Kırca, L., 2022. Usability of Blackthorn (Prunus spinosa) and Some Almond (Prunus amygdalus) Rootstocks as Rootstock for Late Flowering Almond Cultivars. Bolu Abant İzzet Baysal University, Institute of Graduate Education, (Unpublished) PhD Thesis Bolu, Türkiye, 121 pp.
  • Kumarasamy, Y., M. Byres, P.J. Cox, M. Jaspars, L. Nahar & S.D. Sarker, 2007. Screening seeds of some scottish plants for free radical scavenging activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21 (7): 615-621.
  • Kumarasamy, Y., P.J. Cox, M. Jaspars, L. Nahar & S.D. Sarker, 2004. Comparative studies on biological activities of Prunus padus and P. spinosa. Fitoterapia, 75 (1): 77-80.
  • Kuru Berk, S., A. Tas, E. Orman, M. Gundogdu, T. Necas, I. Ondrasek, N. Karatas & S. Ercisli, 2020. Agro-morphological and biochemical characterization of wild Prunus spinosa L. Subsp. dasyphylla (Schur) Domin genotypes naturally grown in Western Black Sea region of Turkey. Agronomy, 10 (11): 1748.
  • Kültür, Ş., 2008. An ethnobotanical study of Kırklareli (Turkey). Phytologia Balcanica, 14: 279-89.
  • Kvittingen, L., B.J. Sjursnes & R. Schmid, 2021. Limonene in citrus: A string of unchecked literature citings?. Journal of Chemical Education, 98 (11): 3600-3607.
  • Lanciotti, R., M.R. Corbo, F. Gardini, M. Sinigaglia & M.E. Guerzoni, 1999. Effect of hexanal on the shelf life of fresh apple slices. Journal of Agricultural and Food Chemistry, 47 (11): 4769-4776.
  • Lappas, C.M. & N.T. Lappas, 2012. D-Limonene modulates T lymphocyte activity and viability. Cellular Immunology, 279 (1): 30-41.
  • Leterme, P., A. Bulden, F. Estrada & A.M. Londoño, 2006. Mineral content of tropical fruits and unconventional foods of the Andes and The Rain Forest of Colombia. Food Chemistry, 95: 644-652.
  • Lovrić, V., P. Putnik, D.B. Kovačević, M. Jukić & V. Dragović-Uzelac, 2017. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technology and Biotechnology, 55 (2): 243–250.
  • Marakoğlu, T., D. Arslan, M. Özcan & H. Hacıseferoğulları, 2005. Proximate composition and technological properties of fresh blackthorn (Prunus spinosa L. subsp dasyphylla (Schur.)) fruits. Journal of Food Engineering, 68 (2): 137-142.
  • McGuire, R.G., 1992. Reporting of objective colour measurement. Hortscience, 27: 1254-1255.
  • Meschini, S., E. Pellegrini, M. Condello, G. Occhionero, S. Delfine, G. Condello & F. Mastrodonato, 2017. Cytotoxic and apoptotic activities of Prunus spinosa trigno ecotype extract on human cancer cells. Molecules, 22 (9): 1578.
  • Mikulic-Petkovsek, M., F. Stampar, R. Veberic & H. Sircelj, 2016. Wild Prunus fruit species as a rich source of bioactive compounds. Journal of Food Science, 81 (8): 1928-1937.
  • Olszewska, M. & M. Wolbiś, 2001. Flavonoids from the flowers of Prunus spinosa L.. Acta Poloniae Pharmaceutica, 58 (5): 367-372.
  • Olszewska, M. & M. Wolbiś, 2002. Further flavonoids from the flowers of Prunus spinosa L.. Acta Poloniae Pharmaceutica, 59 (2): 133-137.
  • Owczareka, A., A. Magiera, M. Matczaka, G. Dorota, M. Piotrowskab, A. Olszewskaa & A. Marchelaka, 2017. Optimisation of preparative HPLC separation of four isomeric kaempferol glycosides from Prunus spinosa L. by application of the response surface methodology. Phytochemistry Letters, 20: 415-424.
  • Pinacho, R., R. Cavero, I. Astiasarán, D. Ansorena & M. Calvo, 2015. Phenolic compounds of blackthorn (Prunus spinosa L.) and Influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19: 49-62.
  • Popović, B.M., B. Blagojević, R.Ž., Pavlović, N. Mićić, S. Bijelić, B. Bogdanović, A. Mišan, C.M.M Duarte & A.T. Serra, 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from North Serbia-from raw data to PCA analysis. Food Chemistry, 302: 125373.
  • Rojas‐Graü, M.A., A. Sobrino‐López, M. Soledad Tapia & O. Martín‐Belloso, 2006. Browning inhibition in fresh‐cut ‘Fuji’ apple slices by natural antibrowning agents. Journal of Food Science, 71 (1): 59-65.
  • Ruiz-Rodríguez, B.M., B. de Ancos, C. Sánchez-Moreno, V. Fernández-Ruiz, M. de Cortes Sánchez-Mata, M. Cámara & J. Tardío, 2014. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits, 69: 61-73.
  • Shahidi, F. & R.B. Pegg, 1994. Hexanal as an indicator of meat flavor deterioration. Journal of Food Lipids, 1 (3): 177-186.
  • Sharma, M., J.K. Jacob, J. Subramanian & G. Paliyath, 2010. Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125 (3): 239-247.
  • Sikora, E., M.I. Bieniek & B. Borczak, 2013. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Scientiarum Polonorum Technologia Alimentaria, 12 (4): 365-72.
  • Singleton, V.L., R. Orthofer & R.M. Lamuela-Raventos, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • Spadaccino, G., L. Frabboni, F. Petruzzi, G. Disciglio, A. Mentana, D. Nardiello & M. Quinto, 2021. Essential oil characterization of Prunus spinosa L., Salvia officinalis L., Eucalyptus globulus L., Melissa officinalis L. and Mentha x piperita L. by a volatolomic approach. Journal of Pharmaceutical and Biomedical Analysis, 202: 114167.
  • Urek, U., 2016. Characterization of Some of the Fruit Quality Characterictics on apple “Kaşel-41 X Williams Pride” F1 Population by Using Chromatography Techniques. Institute of Natural and Applied Sciences, Çukurova University, (Unpublished) MSc Thesis ,Adana, Türkiye, 106 s.
  • Veličković, J.M., D.A. Kostić, G.S. Stojanović, S.S. Mitić, M.N. Mitić, S.S. Ranđelović & A.S. Đorđević, 2014. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska industrija, 68 (3): 297-303.
  • Wolbiś, M., M. Olszewska & W.J. Wesołowski, 2001. Triterpenes and sterols in the flowers and leaves of Prunus spinosa L. (Rosaceae). Acta Poloniae Pharmaceutica, 58 (6): 459-462.
  • Yuksel, A.K., 2015. The effects of blackthorn (Prunus spinosa L.) addition on certain quality characteristics of ice cream. Journal of Food Quality, 38 (6): 413-421.

Determination of chemical composition of some blackthorn genotypes (Prunus spinosa L.)

Year 2024, Volume: 61 Issue: 4, 401 - 412, 16.12.2024
https://doi.org/10.20289/zfdergi.1425197

Abstract

Objective: This study aimed to analyze the chemical and functional properties of fruits from five selected Prunus spinosa L. genotypes grown in Seydişehir district of Konya province, and determine the differences among the genotypes.
Material and Methods: In the research, fruit properties such as fruit weight, pericarp color, flesh color were determined, while total soluble solids (TSS), pH, titratable acid (TA), total phenol content, antioxidant level and volatile organic compounds were analyzed. PCA analysis was employed to distinguish variations among the genotypes.
Results: Five different blackthorn genotypes were examined for fruit properties, revealing variations. Fruit weight ranged from 1.31 g to 2.67 g. TSS content was determined to be between 11.9% and 13.2%. pH values varied from 3.35 to 4.22, while TA ranged from 0.83% to 1.30%. Total phenol content ranged from 356.92 mg GAE/100 g to 387.56 mg GAE/100 g. Total antioxidant levels were determined to be between 65.13% and 77.06%. Thirty different compounds were detected in the analysis of volatile organic compounds, including seven different acids.
Conclusion: Significant diversity among the blackthorn genotypes has been identified. Statistical analyses have shown that B01T genotype has the highest total phenol content, while B05T genotype has the highest antioxidant level. The presence of various volatile organic compounds in blackthorn indicates the diversity of its chemical profile. The findings support the notion that blackthorn has a beneficial potential for health and is a valuable candidate for the development of health-focused food products.

References

  • Aparajita, M., M. Juan Pedro & A. Itziar, 2002. Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. American Journal of Botany, 89: 1223-1228.
  • Argon, Z.Ü., N. İlhan, A. Gökyer, S.B. Öztürk & B. Koparal, 2019. Phytochemical evaluation of Morus alba seeds and cold pressed oil. Journal of the Turkish Chemical Society Section A: Chemistry, 6 (1): 41-50.
  • Ayla, Ş., M.Y. Günal, A.A. Sayın Şakul, Ö. Biçeroğlu, E.M. Özdemir, M.E. Okur, D.Ç. Polat, N. Üstündağ Okur & B.E. Bilgiç, 2017. Effects of Prunus spinosa L. fruits on experimental wound healing. Medeniyet Medical Journal, 32: 152-158.
  • Baysan, E.V., 2021. Optimization of Phenolics Substance and Antioxidant Activities, in The Extraction from Prunus spinosa L. Fruits by Response Surface Methodology. Health Science Institute, Bezmialem Vakıf University, (Unpublished) MSc Thesis, İstanbul, Türkiye, 80 pp.
  • Borkowski, B., J. Lutomski, E. Skrzydlewska & B. Zygmunt, 1994. Rosliny lecznicze w fitoterapii, IRiPZ, Poznan, 470-471.
  • Browics, K., 1972. "Prunus, 8-12". In: Flora of Turkey and East Aegean Islands. (Eds. P.H. Davis, J. Cullen & M.J.E. Coode Davis), University Press, Edinburgh, 568 pp.
  • Brunton, N.P., D.A. Cronin, F.J. Monahan & R. Durcan, 2000. A comparison of solid-phase microextraction (SPME) fibres for measurement of hexanal and pentanal in cooked turkey. Food Chemistry, 68 (3): 339-345.
  • Burits, M. & F. Bučar, 2000. Antioxidative activity of Nigella sativa essential oil. Phytotherapy Research, 14: 323-328.
  • Chan, W.K., L.T.H. Tan, K.G. Chan, L.H. Lee & B.H. Goh, 2016. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21 (5): 529.
  • Chitwood, D.J., 2002. Phytochemical based strategies for nematode control. Annual Review of Phytopathology. Annual Reviews, 40 (1): 221-249.
  • Claudia, G.C.F., I.M. Elena & C.S. Niculina, 2017. Some fruit characteristics of blackthorn (Prunus spinosa L.). Annals of The University of Craiova, Vol. 22 (58): 129-136.
  • Elez-Garofulić, I., Z. Zorić, S. Pedisić, M. Brnčić & V. Dragović Uzelac, 2018. UPLC-MS2 profiling of blackthorn flower polyphenols isolated by ultrasound-assisted extraction. Journal of Food Science, 83 (11): 2782–2789.
  • Erturk, Y., S. Ercisli & M. Tosun, 2009. Physico-chemical characteristics of wild plum fruits (Prunus spinosa L.). International Journal of Plant Production, 3 (3): 89-92.
  • Fraternale, D., L. Giamperi, A. Bucchini, P. Sestili, M. Paolillo & D. Ricci, 2009. Prunus spinosa fresh fruit juice: Antioxidant activity in cell-free and cellular systems. Natural Product Communications, 4: 1665-1670.
  • Hatano, T., R. Edamatsu, A. Mori, Y. Fujita, T. Yasuhara, T. Yoshida & T. Okuda, 1989. Effects of the interaction of tannins with co-existing substances. VI. effects of tannins and related polyphenols on superoxide anion radical, and on 1,1- diphenyl-pierylhydrazyl radical Chemical and Pharmaceutical Bulletin, 37: 2016-2021.
  • Karakas, N., M.E. Okur, I. Ozturk, S. Ayla, A.E. Karadag & D.Ç. Polat, 2019. Antioxidant activity of blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeniyet Medical Journal, 34 (3): 297.
  • Kırca, L., 2022. Usability of Blackthorn (Prunus spinosa) and Some Almond (Prunus amygdalus) Rootstocks as Rootstock for Late Flowering Almond Cultivars. Bolu Abant İzzet Baysal University, Institute of Graduate Education, (Unpublished) PhD Thesis Bolu, Türkiye, 121 pp.
  • Kumarasamy, Y., M. Byres, P.J. Cox, M. Jaspars, L. Nahar & S.D. Sarker, 2007. Screening seeds of some scottish plants for free radical scavenging activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21 (7): 615-621.
  • Kumarasamy, Y., P.J. Cox, M. Jaspars, L. Nahar & S.D. Sarker, 2004. Comparative studies on biological activities of Prunus padus and P. spinosa. Fitoterapia, 75 (1): 77-80.
  • Kuru Berk, S., A. Tas, E. Orman, M. Gundogdu, T. Necas, I. Ondrasek, N. Karatas & S. Ercisli, 2020. Agro-morphological and biochemical characterization of wild Prunus spinosa L. Subsp. dasyphylla (Schur) Domin genotypes naturally grown in Western Black Sea region of Turkey. Agronomy, 10 (11): 1748.
  • Kültür, Ş., 2008. An ethnobotanical study of Kırklareli (Turkey). Phytologia Balcanica, 14: 279-89.
  • Kvittingen, L., B.J. Sjursnes & R. Schmid, 2021. Limonene in citrus: A string of unchecked literature citings?. Journal of Chemical Education, 98 (11): 3600-3607.
  • Lanciotti, R., M.R. Corbo, F. Gardini, M. Sinigaglia & M.E. Guerzoni, 1999. Effect of hexanal on the shelf life of fresh apple slices. Journal of Agricultural and Food Chemistry, 47 (11): 4769-4776.
  • Lappas, C.M. & N.T. Lappas, 2012. D-Limonene modulates T lymphocyte activity and viability. Cellular Immunology, 279 (1): 30-41.
  • Leterme, P., A. Bulden, F. Estrada & A.M. Londoño, 2006. Mineral content of tropical fruits and unconventional foods of the Andes and The Rain Forest of Colombia. Food Chemistry, 95: 644-652.
  • Lovrić, V., P. Putnik, D.B. Kovačević, M. Jukić & V. Dragović-Uzelac, 2017. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers. Food Technology and Biotechnology, 55 (2): 243–250.
  • Marakoğlu, T., D. Arslan, M. Özcan & H. Hacıseferoğulları, 2005. Proximate composition and technological properties of fresh blackthorn (Prunus spinosa L. subsp dasyphylla (Schur.)) fruits. Journal of Food Engineering, 68 (2): 137-142.
  • McGuire, R.G., 1992. Reporting of objective colour measurement. Hortscience, 27: 1254-1255.
  • Meschini, S., E. Pellegrini, M. Condello, G. Occhionero, S. Delfine, G. Condello & F. Mastrodonato, 2017. Cytotoxic and apoptotic activities of Prunus spinosa trigno ecotype extract on human cancer cells. Molecules, 22 (9): 1578.
  • Mikulic-Petkovsek, M., F. Stampar, R. Veberic & H. Sircelj, 2016. Wild Prunus fruit species as a rich source of bioactive compounds. Journal of Food Science, 81 (8): 1928-1937.
  • Olszewska, M. & M. Wolbiś, 2001. Flavonoids from the flowers of Prunus spinosa L.. Acta Poloniae Pharmaceutica, 58 (5): 367-372.
  • Olszewska, M. & M. Wolbiś, 2002. Further flavonoids from the flowers of Prunus spinosa L.. Acta Poloniae Pharmaceutica, 59 (2): 133-137.
  • Owczareka, A., A. Magiera, M. Matczaka, G. Dorota, M. Piotrowskab, A. Olszewskaa & A. Marchelaka, 2017. Optimisation of preparative HPLC separation of four isomeric kaempferol glycosides from Prunus spinosa L. by application of the response surface methodology. Phytochemistry Letters, 20: 415-424.
  • Pinacho, R., R. Cavero, I. Astiasarán, D. Ansorena & M. Calvo, 2015. Phenolic compounds of blackthorn (Prunus spinosa L.) and Influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19: 49-62.
  • Popović, B.M., B. Blagojević, R.Ž., Pavlović, N. Mićić, S. Bijelić, B. Bogdanović, A. Mišan, C.M.M Duarte & A.T. Serra, 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from North Serbia-from raw data to PCA analysis. Food Chemistry, 302: 125373.
  • Rojas‐Graü, M.A., A. Sobrino‐López, M. Soledad Tapia & O. Martín‐Belloso, 2006. Browning inhibition in fresh‐cut ‘Fuji’ apple slices by natural antibrowning agents. Journal of Food Science, 71 (1): 59-65.
  • Ruiz-Rodríguez, B.M., B. de Ancos, C. Sánchez-Moreno, V. Fernández-Ruiz, M. de Cortes Sánchez-Mata, M. Cámara & J. Tardío, 2014. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits, 69: 61-73.
  • Shahidi, F. & R.B. Pegg, 1994. Hexanal as an indicator of meat flavor deterioration. Journal of Food Lipids, 1 (3): 177-186.
  • Sharma, M., J.K. Jacob, J. Subramanian & G. Paliyath, 2010. Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125 (3): 239-247.
  • Sikora, E., M.I. Bieniek & B. Borczak, 2013. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Scientiarum Polonorum Technologia Alimentaria, 12 (4): 365-72.
  • Singleton, V.L., R. Orthofer & R.M. Lamuela-Raventos, 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • Spadaccino, G., L. Frabboni, F. Petruzzi, G. Disciglio, A. Mentana, D. Nardiello & M. Quinto, 2021. Essential oil characterization of Prunus spinosa L., Salvia officinalis L., Eucalyptus globulus L., Melissa officinalis L. and Mentha x piperita L. by a volatolomic approach. Journal of Pharmaceutical and Biomedical Analysis, 202: 114167.
  • Urek, U., 2016. Characterization of Some of the Fruit Quality Characterictics on apple “Kaşel-41 X Williams Pride” F1 Population by Using Chromatography Techniques. Institute of Natural and Applied Sciences, Çukurova University, (Unpublished) MSc Thesis ,Adana, Türkiye, 106 s.
  • Veličković, J.M., D.A. Kostić, G.S. Stojanović, S.S. Mitić, M.N. Mitić, S.S. Ranđelović & A.S. Đorđević, 2014. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska industrija, 68 (3): 297-303.
  • Wolbiś, M., M. Olszewska & W.J. Wesołowski, 2001. Triterpenes and sterols in the flowers and leaves of Prunus spinosa L. (Rosaceae). Acta Poloniae Pharmaceutica, 58 (6): 459-462.
  • Yuksel, A.K., 2015. The effects of blackthorn (Prunus spinosa L.) addition on certain quality characteristics of ice cream. Journal of Food Quality, 38 (6): 413-421.
There are 46 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment
Journal Section Articles
Authors

Şakir Burak Bükücü 0000-0002-6589-6237

Zahide Süslüoğlu 0000-0002-3958-6374

Akide Özcan 0000-0001-7182-3811

Nefise Ebru Yaşa Kafkas 0000-0003-3412-5971

Mehmet Sütyemez 0000-0003-2417-8009

Early Pub Date December 16, 2024
Publication Date December 16, 2024
Submission Date January 24, 2024
Acceptance Date August 6, 2024
Published in Issue Year 2024 Volume: 61 Issue: 4

Cite

APA Bükücü, Ş. B., Süslüoğlu, Z., Özcan, A., Yaşa Kafkas, N. E., et al. (2024). Determination of chemical composition of some blackthorn genotypes (Prunus spinosa L.). Journal of Agriculture Faculty of Ege University, 61(4), 401-412. https://doi.org/10.20289/zfdergi.1425197

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.