Research Article
BibTex RIS Cite

The in vitro energy and enteric methane values of three microalgae species for ruminants

Year 2025, Volume: 62 Issue: 2, 163 - 172, 23.06.2025
https://doi.org/10.20289/zfdergi.1404998

Abstract

Objective: The aim of the study was to determine the in vitro energy and enteric methane values of the three microalgae (Spirulina platensis (SPTS), Chlorella vulgaris (CVGS) and Schizochytrium spp. (SSPP) species by in vitro Gas Production Technique.
Materials and Method: The gas production (GP) of the microalgae were found based on 3, 6, 9, 12, 24, 48 and 72 hours incubation period. The IVOMD (In Vitro Organic Matter Digestibility), ME (Metabolic Energy) and NEL (Net Energy Lactation) values were calculated by using 24-hours gas production and some crude nutrient contents. The CH4VFA (Methane volatile fatty acids) were found from volatile fatty acids (VFA) profiles of 48-hours of incubation residues.
Results: For each microalgae, the differences between the IVOMD and NEL values were significant (P<0.05). The differences between IVOMD and NEL values were similar in SPTS and CVGS which were significantly higher than SSPP (31.10 DM% , 1010 kcal/kg) (P<0.05). The ∑VFA and CH4 VFA were found to be highest in CVGS and similar to each other in SPTS and SSPP. Although the CH4VFA values of SPTS and SPSS were similar to each other, the CH4VFA value of SSPP (0.70 mol/mol VFA) was found to be the lowest.
Conclusion: If it is produced economically, it may be recommended that CVGS can be used as an alternative feed source in ruminant nutrition due to high energy, crude protein and ∑VFA concentrations, while SPTS and SSPP can be used as feed additives due to their low ∑VFA and CH4VFA concentrations.

Supporting Institution

Ege University Scientific Research Projects Coordination (BAP, Project No; FYL-2021-22676)

Project Number

BAP, Project No; FYL-2021-22676

Thanks

Thanks for Marin Biyoteknoloji Ürünleri ve Gıda San. Tic. Ltd. Şti. which helped supply some microalgae as research material.

References

  • Ahmed, E., K. Suzuki & T. Nishida, 2023. Micro-and macro-algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals, 13 (5): 796-810.
  • Altomonte, I., F. Salari, R. Licitra & M. M.artini, 2018. Use of microalgae in ruminant nutrition and implications on milk quality-a review. Livestock Science, 214: 25-35.
  • Anele, U.Y., W.Z. Yang, P.J. McGinn, S.M. Tibbetts & T.A. McAllister, 2016. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96 (3): 354-363. https://doi.org/10.1139/cjas-2015-0141.
  • AOAC, 1995. Animal Feed: Sample Preparation (950.02) Official Methods of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington DC, USA, 771 pp.
  • Beauchemin, K.A., M. Kreuzer & F. O’Mara & T. A. McAllister, 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 48 (1-2): 21-27. https://doi.org/10.1071/ea07199.
  • Christaki, E., P. Florou-Paneri & E. Bonos, 2011. Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition, 62 (8): 794-799. https://doi.org/10.3109/09637486.2011.582460.
  • Erwin, E.S., G.J. Marco & E.M. Emery, 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science, 44: 1768-1771.
  • Esmail, S.H., 2019. Dietary manipulation for less methane output. (Web page: https://www.dairyglobal.net/Nutrition/Articles/2019/6/Dietarymanipulation-for-less-methane-output-442022E/) (Date accessed: August, 2020)
  • Gooma, A., S.A.E. Kholif, A.M. Kholif, R. Salama, H.A. El-Alamy & O.A. Olafadehan, 2018. Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. Journal of Agricultural and Food Chemistry, 66 (8): 1751-1759. https://doi.org/10.1021/acs.jafc.7b04704.
  • Grainger, C. & K. Beauchemin, 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science Technology 166: 308-320. https://doi.org/10.1016/j.anifeedsci.2011.04.021.
  • Jack, A., M. Adegbeye, D. Ekanem, T. Faniyi, A.N. Fajemisin, M.M.M.Y. Elghandour, A.Z.M. Salem, R.R. Rivas-Caceres, K. Adewumi & O. Edoh, 2023. “Microalgae Application in Feed for Ruminants, 397-409”. In Handbook of Food and Feed from Microalgae (Eds. E. Jacob-Lopes, M. I. Queiroz, M. Manzoni Maroneze & L.Q. Zepka), Academic Press, 648 pp.
  • Kholif, A.E., M.M.Y. Elghandour, A.Z.M. Salem, A. Barbabosa, O. Márquez & N.E. Odongo, 2017. The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. The Journal of Agricultural Science, 155 (3): 494-507. 10.1017/S0021859616000812.
  • Kiani, A., C. Wolf, K. Giller, L. Eggerschwiler, M. Kreuzer & A. Schwarm, 2020. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Canadian Journal of Animal Science, 100 (3): 485-493. https://doi.org/10.1139/cjas-2019-0187.
  • Lamminen, M., 2021. Nutritional Value of Microalgae for Ruminants and Implications from Microalgae Production. CABI Reviews, 16: 054 (1-28). https://doi.org/10.1079/PAVSNNR202116054.
  • Margulis, L.,1981. “Symbiosis in Cell Evolution”. 2nd Ed., W. H. Freeman, New York, 452 pp.
  • Madeira, M.S., C. Cardoso, P.A. Lopes, D. Coelho, C. Afonso, N.M. Bandarra & J.A. Prates, 2017. Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205: 111-121. https://doi.org/10.1016/j.livsci.2017.09.020.
  • Marrez, D.A., A. Cieślak, R. Gawad, H.M. Ebeid, M. Chrenková, M. Gao, Y. R. Yanza, M. El-Sherbiny & M. Szumacher-Strabel, 2017. Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. Journal Animal Feed Science, 26 (4): 359-364. https://doi.org/10.22358/jafs/81275/2017.
  • Martin, C., D.P. Morgavi & M. Doreau, 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4 (3): 351-365. https://doi.org/10.1017/S1751731109990620
  • McDonald, P., R.A. Edwards, J. Greenhalgh & F.D. Morgan, 2011. Animal Nutrition 7th edition. Pearson Education Limited Edinburgh Gate,Harlow, Essex CM20 2JE, England, 714 pp. ISBN: 978-1-4082-0423-8
  • Meehan, D.J., A.R. Cabrita, J.L. Silva, A.J. Fonseca & M.R. Maia, 2021. Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. Algal Research, 56: 102284. https://doi.org/10.1016/j.algal.2021.102284.
  • Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz & W. Schneider, 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Sciences Cambridge Core, 93 (1): 217-222. https://doi.org/10.1017/S0021859600086305.
  • Menke, K.H. & H. Steingass, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28: 7-55.
  • Özcan, M., 2023. Product report: SOYBEAN. Tarimsal Ekonomi ve Politika Geliştirme Enstitüsü, TEPGE. (Web page: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2023%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Soya%20%C3%9Cr%C3%BCn%20Raporu%20TEPGE-389.pdf.27p.) (Date Accessed: June 2024)
  • Parisi, G., F. Tulli, R. Fortina, R. Marino, P. Bani, A.D. Zotte, A. Angelis, G. Piccolo, L. Pinotti, A. Schiavone, G. Terova, A. Prandini, L. Gasco, A. Roncarati & P.P. Danieli, 2020. Protein hunger of the feed sector: the alternatives offered by the plant world. Italian Journal of Animal Science, 19 (1): 1204-1225. https://doi.org/10.1080/1828051X.2020.1827993.
  • Ramin, M. & P. Huhtanen, 2012. Development of an in vitro method for determination of methane production kinetics using a fully automated in vitro gas system: A modeling approach. Animal Feed Science and Technology, 174 (3-4): 190-200. https://doi.org/10.1016/j.anifeedsci.2012.03.008.
  • Scott, N.R. & C. Gooch, 2017. “‘Towards’ Sustainability of Dairy Farming: An Overview: Part 2, 1-16”. In: Sustainability. Achieving Sustainable Production of Milk, Volume 2: Safety, Quality and Sustainability (Eds. N. van Belzen) Burleigh Dodds Science Publishing, 1518 Walnut Street, Suite 900, Philadelphia, PA 19102-3406, USA, 432 pp.
  • SOLID, 2016. “Feeding home-grown protein and novel feeds to dairy cows. Technical Note”. Produced by The Organic Research Centre, UK. (Web page: https://www.organicresearchcentre.com/our-research/research-project-library/sustainable-organic-and-low-input-dairying/) (Date accessed: June 2021).
  • Sousa, I., L. Gouveia, A.P. Batista, A. Raymundo & N.M. Bandarra, 2008. “Microalgae in Novel Food Products, 75-112”. In: Food Chemistry Research Developments (Eds. K.N. Papadopoulos). Nova Science Publishers, Inc., Hauppauge NY, USA. 297 pp.
  • SPSS, IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • Sucu, E., 2020. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Annals of Animal Science, 20 (1): 207-218. https://doi.org/10.2478/aoas-2019-0061.
  • Van Soest, P.J., 1994. “Nutritional Ecology of the Ruminant”. 2nd Ed., Cornell University Press, Ithaca, 476 pp.
  • Wild, K.J., H. Steingaß & M. Rodehutscord, 2018. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. Journal of Animal Physiology Animal Nutrition (Berl), 102 (5): 1306-1319. https://doi.org /10.1111/jpn.12953.
  • Wild, K.J., 2019. Investigations on Nutritional Characteristics of Microalgae with Emphasis on Ruminants. University of Hohenheim, Faculty of Agricultural Sciences, (Unpublished) PhD Thesis, 161 pp.
  • Wolin. M.J, 1960. A theoretical rumen fermentation balance. Journal of Dairy Science, 43 (10): 1452-1459. https://doi.org/10.3168/jds.S0022-0302 (60)90348-9.

Ruminantlar için üç mikroalg türünün in vitro enerji ve enterik metan değerleri

Year 2025, Volume: 62 Issue: 2, 163 - 172, 23.06.2025
https://doi.org/10.20289/zfdergi.1404998

Abstract

Amaç: Bu çalışmanın amacı, üç mikroalg türünün (Spirulina platensis (SPTS), Chlorella vulgaris (CVGS) ve Schizochytrium spp. (SSPP)) in vitro enerji ve enterik metan değerlerinin in vitro Gaz Üretim Tekniği ile belirlenmesidir.
Materyal ve Yöntem: Mikroalglerin 3, 6, 9, 12, 24, 48 ve 72 saatlik gaz üretimleri (GÜ), IVOMD (In Vitro Organik Madde Sindirilebilirliği), ME (Metabolik Enerji), NEL (Net Enerji Laktasyon) değerleri; 24 saatlik gaz üretimi ve bazı ham besin içerikleri kullanılarak hesaplanmıştır. Ayrıca, CH4VFA (Metan uçucu yağ asitleri), uçucu yağ asitleri (UYA) profilleri de 48 saatlik artıkta bulunmuştur.
Araştırma Bulguları: Her bir mikroalg için IVOMD ve NEL değerleri arasındaki farklar önemlidir (P<0.05). IVOMD ve NEL değerleri arasındaki farklar, SPTS ve CVGS'de birbirine benzer ve SSPP'den (%31.10, KM, 1010 kcal/kg) yüksek bulunmuştur (P<0.05). C2, ∑UYA ve CH4 VFA CVGS'de en yüksek, SPTS ve SSPP’de ise birbirine benzer bulunmuştur. SPTS ve SPSS'in CH4VFA değerleri birbirine benzer olmasına rağmen, SSPP'nin CH4VFA değeri (0.70 mol/mol VFA) en düşük bulunmuştur.
Sonuç: Sonuç olarak, ruminant beslemede yüksek enerji, ham protein ve ∑UYA içeriği nedeniyle ekonomik olarak üretilirse CVGS’nin alternatif yem kaynağı olarak kullanılabileceği, SPTS ve SSPP’nin ise ∑UYA ve CH4VFA konsantrasyonunun düşük olması nedeniyle yem katkı maddesi olarak kullanılabileceği söylenebilir.

Supporting Institution

Ege University Scientific Research Projects Coordination (BAP, Project No; FYL-2021-22676)

Project Number

BAP, Project No; FYL-2021-22676

References

  • Ahmed, E., K. Suzuki & T. Nishida, 2023. Micro-and macro-algae combination as a novel alternative ruminant feed with methane-mitigation potential. Animals, 13 (5): 796-810.
  • Altomonte, I., F. Salari, R. Licitra & M. M.artini, 2018. Use of microalgae in ruminant nutrition and implications on milk quality-a review. Livestock Science, 214: 25-35.
  • Anele, U.Y., W.Z. Yang, P.J. McGinn, S.M. Tibbetts & T.A. McAllister, 2016. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96 (3): 354-363. https://doi.org/10.1139/cjas-2015-0141.
  • AOAC, 1995. Animal Feed: Sample Preparation (950.02) Official Methods of Analysis. Association of Official Analytical Chemists, 15th Edition, Washington DC, USA, 771 pp.
  • Beauchemin, K.A., M. Kreuzer & F. O’Mara & T. A. McAllister, 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 48 (1-2): 21-27. https://doi.org/10.1071/ea07199.
  • Christaki, E., P. Florou-Paneri & E. Bonos, 2011. Microalgae: a novel ingredient in nutrition. International Journal of Food Sciences and Nutrition, 62 (8): 794-799. https://doi.org/10.3109/09637486.2011.582460.
  • Erwin, E.S., G.J. Marco & E.M. Emery, 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science, 44: 1768-1771.
  • Esmail, S.H., 2019. Dietary manipulation for less methane output. (Web page: https://www.dairyglobal.net/Nutrition/Articles/2019/6/Dietarymanipulation-for-less-methane-output-442022E/) (Date accessed: August, 2020)
  • Gooma, A., S.A.E. Kholif, A.M. Kholif, R. Salama, H.A. El-Alamy & O.A. Olafadehan, 2018. Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. Journal of Agricultural and Food Chemistry, 66 (8): 1751-1759. https://doi.org/10.1021/acs.jafc.7b04704.
  • Grainger, C. & K. Beauchemin, 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science Technology 166: 308-320. https://doi.org/10.1016/j.anifeedsci.2011.04.021.
  • Jack, A., M. Adegbeye, D. Ekanem, T. Faniyi, A.N. Fajemisin, M.M.M.Y. Elghandour, A.Z.M. Salem, R.R. Rivas-Caceres, K. Adewumi & O. Edoh, 2023. “Microalgae Application in Feed for Ruminants, 397-409”. In Handbook of Food and Feed from Microalgae (Eds. E. Jacob-Lopes, M. I. Queiroz, M. Manzoni Maroneze & L.Q. Zepka), Academic Press, 648 pp.
  • Kholif, A.E., M.M.Y. Elghandour, A.Z.M. Salem, A. Barbabosa, O. Márquez & N.E. Odongo, 2017. The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. The Journal of Agricultural Science, 155 (3): 494-507. 10.1017/S0021859616000812.
  • Kiani, A., C. Wolf, K. Giller, L. Eggerschwiler, M. Kreuzer & A. Schwarm, 2020. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Canadian Journal of Animal Science, 100 (3): 485-493. https://doi.org/10.1139/cjas-2019-0187.
  • Lamminen, M., 2021. Nutritional Value of Microalgae for Ruminants and Implications from Microalgae Production. CABI Reviews, 16: 054 (1-28). https://doi.org/10.1079/PAVSNNR202116054.
  • Margulis, L.,1981. “Symbiosis in Cell Evolution”. 2nd Ed., W. H. Freeman, New York, 452 pp.
  • Madeira, M.S., C. Cardoso, P.A. Lopes, D. Coelho, C. Afonso, N.M. Bandarra & J.A. Prates, 2017. Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205: 111-121. https://doi.org/10.1016/j.livsci.2017.09.020.
  • Marrez, D.A., A. Cieślak, R. Gawad, H.M. Ebeid, M. Chrenková, M. Gao, Y. R. Yanza, M. El-Sherbiny & M. Szumacher-Strabel, 2017. Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. Journal Animal Feed Science, 26 (4): 359-364. https://doi.org/10.22358/jafs/81275/2017.
  • Martin, C., D.P. Morgavi & M. Doreau, 2010. Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4 (3): 351-365. https://doi.org/10.1017/S1751731109990620
  • McDonald, P., R.A. Edwards, J. Greenhalgh & F.D. Morgan, 2011. Animal Nutrition 7th edition. Pearson Education Limited Edinburgh Gate,Harlow, Essex CM20 2JE, England, 714 pp. ISBN: 978-1-4082-0423-8
  • Meehan, D.J., A.R. Cabrita, J.L. Silva, A.J. Fonseca & M.R. Maia, 2021. Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. Algal Research, 56: 102284. https://doi.org/10.1016/j.algal.2021.102284.
  • Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz & W. Schneider, 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Sciences Cambridge Core, 93 (1): 217-222. https://doi.org/10.1017/S0021859600086305.
  • Menke, K.H. & H. Steingass, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28: 7-55.
  • Özcan, M., 2023. Product report: SOYBEAN. Tarimsal Ekonomi ve Politika Geliştirme Enstitüsü, TEPGE. (Web page: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2023%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Soya%20%C3%9Cr%C3%BCn%20Raporu%20TEPGE-389.pdf.27p.) (Date Accessed: June 2024)
  • Parisi, G., F. Tulli, R. Fortina, R. Marino, P. Bani, A.D. Zotte, A. Angelis, G. Piccolo, L. Pinotti, A. Schiavone, G. Terova, A. Prandini, L. Gasco, A. Roncarati & P.P. Danieli, 2020. Protein hunger of the feed sector: the alternatives offered by the plant world. Italian Journal of Animal Science, 19 (1): 1204-1225. https://doi.org/10.1080/1828051X.2020.1827993.
  • Ramin, M. & P. Huhtanen, 2012. Development of an in vitro method for determination of methane production kinetics using a fully automated in vitro gas system: A modeling approach. Animal Feed Science and Technology, 174 (3-4): 190-200. https://doi.org/10.1016/j.anifeedsci.2012.03.008.
  • Scott, N.R. & C. Gooch, 2017. “‘Towards’ Sustainability of Dairy Farming: An Overview: Part 2, 1-16”. In: Sustainability. Achieving Sustainable Production of Milk, Volume 2: Safety, Quality and Sustainability (Eds. N. van Belzen) Burleigh Dodds Science Publishing, 1518 Walnut Street, Suite 900, Philadelphia, PA 19102-3406, USA, 432 pp.
  • SOLID, 2016. “Feeding home-grown protein and novel feeds to dairy cows. Technical Note”. Produced by The Organic Research Centre, UK. (Web page: https://www.organicresearchcentre.com/our-research/research-project-library/sustainable-organic-and-low-input-dairying/) (Date accessed: June 2021).
  • Sousa, I., L. Gouveia, A.P. Batista, A. Raymundo & N.M. Bandarra, 2008. “Microalgae in Novel Food Products, 75-112”. In: Food Chemistry Research Developments (Eds. K.N. Papadopoulos). Nova Science Publishers, Inc., Hauppauge NY, USA. 297 pp.
  • SPSS, IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • Sucu, E., 2020. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Annals of Animal Science, 20 (1): 207-218. https://doi.org/10.2478/aoas-2019-0061.
  • Van Soest, P.J., 1994. “Nutritional Ecology of the Ruminant”. 2nd Ed., Cornell University Press, Ithaca, 476 pp.
  • Wild, K.J., H. Steingaß & M. Rodehutscord, 2018. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. Journal of Animal Physiology Animal Nutrition (Berl), 102 (5): 1306-1319. https://doi.org /10.1111/jpn.12953.
  • Wild, K.J., 2019. Investigations on Nutritional Characteristics of Microalgae with Emphasis on Ruminants. University of Hohenheim, Faculty of Agricultural Sciences, (Unpublished) PhD Thesis, 161 pp.
  • Wolin. M.J, 1960. A theoretical rumen fermentation balance. Journal of Dairy Science, 43 (10): 1452-1459. https://doi.org/10.3168/jds.S0022-0302 (60)90348-9.
There are 34 citations in total.

Details

Primary Language English
Subjects Animal Feeding, Animal Nutrition
Journal Section Research Article
Authors

Nagehan Nur Altan 0000-0001-6021-2150

Muazzez Acar 0000-0002-1742-8076

Project Number BAP, Project No; FYL-2021-22676
Publication Date June 23, 2025
Submission Date December 14, 2023
Acceptance Date December 28, 2024
Published in Issue Year 2025 Volume: 62 Issue: 2

Cite

APA Altan, N. N., & Acar, M. (2025). The in vitro energy and enteric methane values of three microalgae species for ruminants. Journal of Agriculture Faculty of Ege University, 62(2), 163-172. https://doi.org/10.20289/zfdergi.1404998