Research Article
BibTex RIS Cite

Luteovirus pavhordei (BYDV-P0) in durum wheat: molecular diagnosis, disease intensity and impact on yield components

Year 2025, Volume: 62 Issue: 3, 355 - 363, 18.09.2025
https://doi.org/10.20289/zfdergi.1524869

Abstract

Objective: Luteovirus pavhordei is increasingly causing significant crop losses worldwide, affecting several crops, including durum wheat (Triticum turgidum L. var. durum), which is grown extensively. Plants possess innate defense mechanisms such as resistance genes against viral diseases. Among these, the Bdv2 gene, which occurs naturally in wild wheat varieties, provides resistance specifically to BYDV-P0. In this study, it was observed infected durum wheat varieties exhibited lower chlorophyll (SPAD), number of grains per ear (grains/ear) and ear yield (g/ear).
Material and Methods: The visual assessment revealed a high symptomatic infection among Luteovirus pavhordei infected durum wheat, underscoring the severity of the disease. Using Bdv2-specific primers (BYAgi), it was screened for the presence of the Bdv2 gene in five different durum wheat varieties; however, none harbored this resistance gene.
Results: The findings indicate that the absence of the Bdv2 gene in the studied durum wheat varieties renders them susceptible to BYDV-P0. The virus-induced reductions in chlorophyll and ear yield formation further highlight the detrimental impact of BYDV-P0 on durum wheat.
Conclusion: These results underscore the urgency of developing strategies to mitigate the effects of this viral disease in wheat cultivation

References

  • Ayala, L., M. Henry, M.V. Ginkel, R. Singh, B. Keller & M. Khairallah, 2002. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica, 128 (1): 249-259.
  • Ayala, N.L., H. Bariana, R. Singh, J. Gibson, A. Mechanicos & P. Larkin, 2007. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Thinopyrum ponticum translocations in wheat. Theoretical and Applied Genetics, 116 (4): 63-75.
  • Aykut, T.F., D. İştipliler & M. Tosun, 2017. Correlation and Path Coefficient Analysis in Some Bread Wheat (Triticum aestivum L.) Genotypes. Journal of Agriculture Faculty of Ege University, 54 (1): 85-89.
  • Brettell, R., P. Banks, Y. Cauderon, X. Chen, Z. Cheng, P. Larkin & P.J. Waterhouse, 1988. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Annals of Applied Biology, 113 (3): 599-603.
  • Çapkan, D., 2016. Ege Bölgesi Buğday Üretim Alanlarında Barley Yellow Dwarf Virus (BYDV)’nin Bulunmac Durumunun Ve Moleküler Özelliklerinin Belirlenmesi Üzerinde Araştırma. Ege University, Faculty of Agriculture, Department of Plant Protection (Unpublished) Msc Thesis, İzmir, Turkey, 73 pp.
  • Cheour, F., A. Comeau & A. Asselin, 1993. Barley Yellow Dwarf Virus Multiplication and Host Plant Tolerance in Durum Wheat. Journal of Phytopathology, 139 (4): 357-366.
  • Choudhury, S., D. Al-Shammari, H. Hu, H. Meinke, G. Westmore, C. Birchall, P. Larkin & M. Zhou, 2018. A screening method to detect BYDV-P0 resistance in cereals under glasshouse conditions. Plant Pathology, 67 (9): 1987-1996.
  • Choudhury, S., P. Larkin, R. Xu, M. Hayden, K. Forrest, H. Meinke, H. Hu, M. Zhou & Y. Fan, 2019. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC genomics, 20 (2):1-8.
  • D’arcy, C., 1995. Symptomatology and host range of barley yellow dwarf. APS Press, 40 (2): 9-28.
  • Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19 (1): 11-15.
  • Foissac, X., L.D. Savalle, P. Gentit, M.J. Dulucq & T. Candresse, 2000. Polyvalent detection of fruit tree Tricho, Capillo and Faveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Horticulturae, 357 (1): 52-59.
  • Gill, C.C., 1967. susceptibility of common and durum spring wheats to barley yellow dwarf virus. Canadian Journal of Plant Science, 47 (5): 571-576.
  • Hewings, A.J., 1995. Purification and virion characterization of barley yellow dwarf viruses. APS Press, 40 (2): 165-179. Jarošová, J., E. Beoni & Kundu, J.K, 2016. Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crops Research, 198 (1): 200-214.
  • Jarošová, J., J. Chrpová, V. Šíp & J. Kundu, 2013. A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathology, 62: 436-443.
  • Jensen, S.G. & C.J. D’Arcy, 1995. Effects of barley yellow dwarf on host plants. APS Press, 40 (1): 55-74.
  • Lehto, K., M. Tikkanen, J.B. Hiriart, V. Paakkarinen & E. M. Aro, 2003. Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Molecular Plant Microbe Interaction, 16 (12): 1135-1144.
  • Liu, J., J. Yang, H. Bi & P. Zhang, 2014. Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. Journal of Integrative Plant Biology, 56 (2): 122-132.
  • McKirdy, S., R. Jones & F. Nutter Jr, 2002. Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease, 86 (7): 769-773.
  • Oswald, J. W. & B.J.P. Houston, 1953. The yellow-dwarf virus disease of cereal crops. APS Press, 43 (3): 128-136.
  • Parizoto, G., A. Rebonatto, J. Schons & D. Lau, 2013. Barley yellow dwarf virus-PAV in Brazil: Seasonal fluctuation and biological characteristics. Tropical Plant Pathology, 38 (2): 11-19.
  • Perry, K. L., F.L Kolb, B. Sammons, C. Lawson, G. Cisar & H. Ohm, 2000. Yield Effects of Barley yellow dwarf virus in Soft Red Winter Wheat. Phytopathology, 90 (9): 1043-1048.
  • Power, A. & S.J.B. Gray, 1995. Aphid transmission of barley yellow dwarf viruses: interactions between viruses, vectors, and host plants. APS Press, 40 (1): 259-289.
  • Rochow, W. J. A., 1961. The barley yellow dwarf virus disease of small grains. APS Press, 13 (1): 217-248.
  • Shiferaw, B., Smale, M., Braun, HJ. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291-317 (2013). https://doi.org/10.1007/s12571-013-0263-y
  • Stoutjesdijk, P., S. Kammholz, S. Kleven, S. Matsay, P. Banks & P. Larkin, 2001. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Crop and Pasture Science, 52 (1): 1383-1388.
  • Uddling, J., J.A. Gelang, K. Piikki & H. Pleijel, 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis, 91 (1): 37-46.
  • Usta, M., 2013. Doğu Anadolu Bölgesinde Buğday Üretim Alanlarındaki Bazı Buğday Virüslerinin Multipleks RT-PCR Yöntemi ile Araştırılması ve Virüs izolatlarının Moleküler Karakterizasyonu. Van Yüzüncü Yıl University, Faculty of Agriculture, (Unpublished) PhD Thesis, Van, Turkey, 184 pp.
  • Wang, B., J.U. Hajano, Y. Ren, C. Lu & X. Wang, 2015. iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation. Virology Journal, 12 (2): 99.
  • Xin, Z., R. Brettell, Z. Cheng, P. Waterhouse, R. Appels, P. Banks, G. Zhou, X. Chen & P.J.G. Larkin, 1988. Characterization of a potential source of barley yellow dwarf virus resistance for wheat. Genome, 30 (2): 250-257.
  • Yıldırım, T., Yakışır, E., Eser, C., Türköz, M., vd. (2020). Ekmeklik Buğday Çeşit ve Hatlarında Kışlık ve Yazlık Ekimlerin Morfolojik ve Fenolojik Özellikler Üzerine Etkisinin Belirlenmesi. Bahri Dağdaş Bitkisel Araştırma Dergisi, 9 (2): 122-133.
  • Zhang, Z., Z. Lin & Z.J.J. Xin, 2009. Research progress in BYDV resistance genes derived from wheat and its wild relatives. Genomics, 36 (9): 567-573.

Makarnalık buğdayda Luteovirus pavhordei (BYDV-P0): moleküler tanısı, hastalık şiddeti ve verim bileşenleri üzerindeki etkisi

Year 2025, Volume: 62 Issue: 3, 355 - 363, 18.09.2025
https://doi.org/10.20289/zfdergi.1524869

Abstract

Amaç: Luteovirus pavhordei (BYDV-P0), yaygın olarak yetiştirilen makarnalık buğday (Triticum turgidum L. var. durum) dahil olmak üzere çeşitli ürünleri etkileyerek dünya çapında giderek daha fazla ürün kaybına neden olmaktadır. Bitkiler, viral hastalıklara karşı dayanıklılık genleri gibi doğuştan gelen savunma mekanizmalarına sahiptir. Bunlar arasında, yabani buğday çeşitlerinde doğal olarak bulunan Bdv2 geni, özellikle BYDV-P0'a karşı dayanıklılık sağlamaktadır. Bu çalışmada, enfekteli makarnalık buğday çeşitlerinin daha düşük klorofil (SPAD), başak başına tane sayısı (tane/başak) ve başak verimi (g/başak) sergilediği gözlemlenmiştir.
Materyal ve Yöntem: Görsel değerlendirme, BYDV-P0 ile enfekte makarnalık buğday çeşitleri arasında yüksek simptomatik enfeksiyon olduğunu ortaya koyarak hastalığın ciddiyetini vurgulamaktadır. Bdv2’ye özgü primerler (BYAgi) kullanarak, beş farklı makarnalık buğday çeşidinde Bdv2 geninin varlığını taranmıştır; ancak çeşitlerde dayanıklılık geni saptanmamıştır.
Araştırma Bulguları: Bulgular, Bdv2 geninin makarnalık buğday çeşitlerinde bulunmamasının çeşitleri BYDV-P0'a karşı hassas hale getirdiğini göstermektedir. Virüsün klorofil oluşumu ve başak veriminde neden olduğu azalmalar, BYDV-P0'ın makarnalık buğday çeşitleri üzerindeki olumsuz etkisini daha da ön plana çıkarmaktadır.
Sonuç: Bu sonuçlar, buğday yetiştiriciliğinde bu viral hastalığın etkilerini kontrolü ve neden olduğu ürün kayıplarını azaltmak için yeni stratejiler geliştirmenin aciliyetini vurgulamaktadır.

References

  • Ayala, L., M. Henry, M.V. Ginkel, R. Singh, B. Keller & M. Khairallah, 2002. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica, 128 (1): 249-259.
  • Ayala, N.L., H. Bariana, R. Singh, J. Gibson, A. Mechanicos & P. Larkin, 2007. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Thinopyrum ponticum translocations in wheat. Theoretical and Applied Genetics, 116 (4): 63-75.
  • Aykut, T.F., D. İştipliler & M. Tosun, 2017. Correlation and Path Coefficient Analysis in Some Bread Wheat (Triticum aestivum L.) Genotypes. Journal of Agriculture Faculty of Ege University, 54 (1): 85-89.
  • Brettell, R., P. Banks, Y. Cauderon, X. Chen, Z. Cheng, P. Larkin & P.J. Waterhouse, 1988. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Annals of Applied Biology, 113 (3): 599-603.
  • Çapkan, D., 2016. Ege Bölgesi Buğday Üretim Alanlarında Barley Yellow Dwarf Virus (BYDV)’nin Bulunmac Durumunun Ve Moleküler Özelliklerinin Belirlenmesi Üzerinde Araştırma. Ege University, Faculty of Agriculture, Department of Plant Protection (Unpublished) Msc Thesis, İzmir, Turkey, 73 pp.
  • Cheour, F., A. Comeau & A. Asselin, 1993. Barley Yellow Dwarf Virus Multiplication and Host Plant Tolerance in Durum Wheat. Journal of Phytopathology, 139 (4): 357-366.
  • Choudhury, S., D. Al-Shammari, H. Hu, H. Meinke, G. Westmore, C. Birchall, P. Larkin & M. Zhou, 2018. A screening method to detect BYDV-P0 resistance in cereals under glasshouse conditions. Plant Pathology, 67 (9): 1987-1996.
  • Choudhury, S., P. Larkin, R. Xu, M. Hayden, K. Forrest, H. Meinke, H. Hu, M. Zhou & Y. Fan, 2019. Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC genomics, 20 (2):1-8.
  • D’arcy, C., 1995. Symptomatology and host range of barley yellow dwarf. APS Press, 40 (2): 9-28.
  • Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19 (1): 11-15.
  • Foissac, X., L.D. Savalle, P. Gentit, M.J. Dulucq & T. Candresse, 2000. Polyvalent detection of fruit tree Tricho, Capillo and Faveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Horticulturae, 357 (1): 52-59.
  • Gill, C.C., 1967. susceptibility of common and durum spring wheats to barley yellow dwarf virus. Canadian Journal of Plant Science, 47 (5): 571-576.
  • Hewings, A.J., 1995. Purification and virion characterization of barley yellow dwarf viruses. APS Press, 40 (2): 165-179. Jarošová, J., E. Beoni & Kundu, J.K, 2016. Barley yellow dwarf virus resistance in cereals: approaches, strategies and prospects. Field Crops Research, 198 (1): 200-214.
  • Jarošová, J., J. Chrpová, V. Šíp & J. Kundu, 2013. A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathology, 62: 436-443.
  • Jensen, S.G. & C.J. D’Arcy, 1995. Effects of barley yellow dwarf on host plants. APS Press, 40 (1): 55-74.
  • Lehto, K., M. Tikkanen, J.B. Hiriart, V. Paakkarinen & E. M. Aro, 2003. Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Molecular Plant Microbe Interaction, 16 (12): 1135-1144.
  • Liu, J., J. Yang, H. Bi & P. Zhang, 2014. Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. Journal of Integrative Plant Biology, 56 (2): 122-132.
  • McKirdy, S., R. Jones & F. Nutter Jr, 2002. Quantification of yield losses caused by barley yellow dwarf virus in wheat and oats. Plant Disease, 86 (7): 769-773.
  • Oswald, J. W. & B.J.P. Houston, 1953. The yellow-dwarf virus disease of cereal crops. APS Press, 43 (3): 128-136.
  • Parizoto, G., A. Rebonatto, J. Schons & D. Lau, 2013. Barley yellow dwarf virus-PAV in Brazil: Seasonal fluctuation and biological characteristics. Tropical Plant Pathology, 38 (2): 11-19.
  • Perry, K. L., F.L Kolb, B. Sammons, C. Lawson, G. Cisar & H. Ohm, 2000. Yield Effects of Barley yellow dwarf virus in Soft Red Winter Wheat. Phytopathology, 90 (9): 1043-1048.
  • Power, A. & S.J.B. Gray, 1995. Aphid transmission of barley yellow dwarf viruses: interactions between viruses, vectors, and host plants. APS Press, 40 (1): 259-289.
  • Rochow, W. J. A., 1961. The barley yellow dwarf virus disease of small grains. APS Press, 13 (1): 217-248.
  • Shiferaw, B., Smale, M., Braun, HJ. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291-317 (2013). https://doi.org/10.1007/s12571-013-0263-y
  • Stoutjesdijk, P., S. Kammholz, S. Kleven, S. Matsay, P. Banks & P. Larkin, 2001. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of barley yellow dwarf virus resistance in wheat. Crop and Pasture Science, 52 (1): 1383-1388.
  • Uddling, J., J.A. Gelang, K. Piikki & H. Pleijel, 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis, 91 (1): 37-46.
  • Usta, M., 2013. Doğu Anadolu Bölgesinde Buğday Üretim Alanlarındaki Bazı Buğday Virüslerinin Multipleks RT-PCR Yöntemi ile Araştırılması ve Virüs izolatlarının Moleküler Karakterizasyonu. Van Yüzüncü Yıl University, Faculty of Agriculture, (Unpublished) PhD Thesis, Van, Turkey, 184 pp.
  • Wang, B., J.U. Hajano, Y. Ren, C. Lu & X. Wang, 2015. iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation. Virology Journal, 12 (2): 99.
  • Xin, Z., R. Brettell, Z. Cheng, P. Waterhouse, R. Appels, P. Banks, G. Zhou, X. Chen & P.J.G. Larkin, 1988. Characterization of a potential source of barley yellow dwarf virus resistance for wheat. Genome, 30 (2): 250-257.
  • Yıldırım, T., Yakışır, E., Eser, C., Türköz, M., vd. (2020). Ekmeklik Buğday Çeşit ve Hatlarında Kışlık ve Yazlık Ekimlerin Morfolojik ve Fenolojik Özellikler Üzerine Etkisinin Belirlenmesi. Bahri Dağdaş Bitkisel Araştırma Dergisi, 9 (2): 122-133.
  • Zhang, Z., Z. Lin & Z.J.J. Xin, 2009. Research progress in BYDV resistance genes derived from wheat and its wild relatives. Genomics, 36 (9): 567-573.
There are 31 citations in total.

Details

Primary Language English
Subjects Phytopathology, Plant Virology in Agriculture, Cereals and Legumes
Journal Section Articles
Authors

Yunus Emre Uslu 0000-0001-5930-5085

Sevdiye Yorgancı 0000-0002-5894-4819

Ali Yiğit 0000-0003-3303-5122

Nermin Yaraşır 0000-0001-7748-9375

Neslihan Yıldız 0009-0005-2030-6765

Early Pub Date September 17, 2025
Publication Date September 18, 2025
Submission Date August 1, 2024
Acceptance Date April 17, 2025
Published in Issue Year 2025 Volume: 62 Issue: 3

Cite

APA Uslu, Y. E., Yorgancı, S., Yiğit, A., … Yaraşır, N. (2025). Luteovirus pavhordei (BYDV-P0) in durum wheat: molecular diagnosis, disease intensity and impact on yield components. Journal of Agriculture Faculty of Ege University, 62(3), 355-363. https://doi.org/10.20289/zfdergi.1524869