BibTex RIS Cite

PEKİN ÖRDEĞİNİN (Anas platyrhynchos f. dom.) DÖLLENMİŞ VE DÖLLENMEMİŞ YUMURTALARINDA KULUÇKA SÜRESİNCE GÖRÜLEN KÜTLE KAYBI

Year 2008, Issue: 11, 151 - 159, 01.12.2008

Abstract

Pekin ördeğinin (Anas platyrhynchos f. dom.) döllenmiş ve döllenmemiş yumurtalarında, laboratuvar koşullarındaki kuluçka sırasında su kaybıyla meydana gelen kütle azalması tespit edilerek, daha önce yapılan çalışmalardan ve bağıntılardan elde edilen sonuçlarla karşılaştırılmıştır. 58 döllenmiş ve 18 döllenmemiş olmak üzere toplam 76 adet yumurtanın kuluçka boyunca gösterdikleri toplam göreceli kütle kaybı, döllenmiş yumurtalarda taze kütlenin %11,48’i ve döllenmemişlerde %8,87’i olarak farklılık göstermiştir. Elde edilen değerlerin genel olarak kuş yumurtalarından beklenen değerlerle uyumlu olduğu görülmüştür. Bir önceki güne göre kaybedilen kütlenin, döllenmiş yumurtalarda —özellikle kuluçkanın ikinci yarısında— günden güne arttığı, döllenmemiş yumurtalarda ise yaklaşık olarak aynı kaldığı belirlenmiştir. Bu artışın, yumurta kabuğundaki incelmeden çok, artan metabolik faaliyet ile birlikte kabuktaki gözenek sayısı artışından kaynaklandığı ileri sürülmektedir. Bu çalışmada elde edilen değerlerin literatürdeki denklemlerden elde edilen değerler ile farklılık gösterdiği tespit edilmiştir. Bu farklılığa tür içi/türler arası farklı yumurta içeriği oranlarının ve/veya kabuk iletimindeki farklılıkların ve/veya farklı ısı, nem, atmosfer basıncı gibi kuluçka ortam koşullarının neden olmuş olabileceği ileri sürüldü.

References

  • Ar, A. ve Rahn, H. (1980). Water in the avian egg: Overall budget of incubation. Amer. Zool.
  • Ar, A., Paganelli, C.V., Reeves, R.B., Green, D.G., Rahn, H. (1974). The avian egg: Water vapor conductance, shell thickness, and functional pore area. Condor, 76, 153-158.
  • Balkan, M. & Biricik, M. (2006): Pekin ördeği (Anas platyrhynchos f. dom.)yumurtalarında kabuk kalınlığı, gözenek sayısı ve gözenek yoğunluğundaki bölgesel farklılıklar.- Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2): 193-196.
  • Balkan, M., Karakaş, R. and Biricik, M. (2006). Changes in eggshell thickness, shell conductance and pore density during incubation in the Peking duck (Anas platyrhynchos f. dom.). Ornis Fennica, 83(3), 117-123.
  • Booth, D.T. and Seymour, R.S. (1987). Effect of eggshell thinning on water vapor conductance of malleefowl eggs. Condor, 89, 453-459.
  • Booth, D.T. (1989). Regional changes in shell thickness, shell conductance, and pore structure during incubation in eggs of the mute swan, Physiol. Zool. 62, 607-620.
  • Booth, D.T. and Sotherland, P.R. (1991). Oxygen consumption, air-cell gas tensions, and incubation parameters of mute swan eggs, Physiol. Zool, 64, 473-484.
  • Burton, E.G. and Tullett, S.G. (1983). A comparison of the effect of eggshell porosity on the respiration and growth of domestic fowl, duck and turkey embryos, Comp. Biochem. Physiol., 75, 167-174.
  • Drent, R.H. (1970): Functional aspects of incubation in the Herring gull.— Behav. Suppl. 17: 1- 132.
  • Drent, R.H. (1975). Incubation.— In: Farner, D. S. ve King, J. R.:Avian Biology, Vol. V, Academic Press, New York.
  • Hoyt, D.F., Board, R.G., Rahn, H. and Paganelli, C.V. (1979). The eggs of the Anatidae: Conductance, pore structure and metabolism. Physiological Zoology, 52, 438-450.
  • Kırıkçı, K.¸ Deemıng, D.C., and Günlü, A. (2004). Effects of egg mass and percentage mass loss during incubation on hatchability of eggs of the rock partridge (Alectoris graeca), British Poultry Science, 45, 3, 380–384.
  • Martin P.A., ve Arnold, T.W. (1991). Relationships among fresh mass, incubation time, and water loss in Japanese Quail eggs. Condor, 9 3:28-37.
  • Massaro, M. ve Davis, L.S. (2005). Differences in egg size, shell thickness, pore density, pore diameter and water vapour conductance between first and second eggs of Snares Penguins Eudyptes robustus and their influence on hatching asynchrony, Ibis, 147(2), 251-258.
  • Nakage, E.S., Cardozo, J.P., Pereira, G.T., Queiroz S.A. and Boleli I.C. (2003). Effect of temperature on incubation period, embryonic mortality, hatch rate, egg water loss and partridge chick weight (Rhynchotus rufescens), Rev. Bras. Cienc. Avic. 5(2), 131-135.
  • Pettit, T. N., Whittow, G. C (1983). Water Loss From Pipped Wedge-Tailed Shearwater Eggs. Condor, 85, 107-109
  • Prinzinger, R., Maisch, H. and Hund, K. (1979). Untersuchungen zum Gasstoffwechsel des Vogelembryos: I. Stoffwechselbedingter Gewichtsverlust, Gewichtskorrelation, tägliche Steigerungsrate und relative Gesamtenergieproduktion, Zool. Jb. Physiol., 83, 180-191.
  • Rahn, H. and Ar, A. (1974). The avian egg: Incubation time and water loss. Condor 76, 147- 152.
  • Rahn, H. and Ar, A. (1980). Gas exchange of the avian egg: Time, structure and function. Amer. Zool., 20, 477-484.
  • Rahn, H. and Paganelli, C.V. (1990). Gas fluxes in avian eggs: Driving forces and the pathway for exchange, Comp. Biochem. Physiol., 95A, 1-15.
  • Rahn, H., Paganelli, C.V. and Ar, A. (1974). The avian egg: Air-cell gas tension, metabolism and incubation time, Respir. Physiol. 22, 297-309.
  • Soliman, F.N.K., Rizk, R.E. and Brake J. (1994). Relationship between shell porosity, shell thickness, egg weight loss, and embryonic development in Japanese Quail eggs, Poultry Science, 73, 1607-1611.
  • Sotherland, P.R., Packard, G.C., Taigen, T.L. and Boardman, T.J.(1980). An altitudinal cline in conductance of cliff swallow (Petrocheridon pyrrhonata) eggs to water vapor, Auk
  • Thompson, M.B. and Goldie K.N. (1990). Conductance and structure of eggs of Adelie penguins, Pygoscelis adeliae, and its implications for incubation, Condor, 92(2), 304- 312.
  • Tullett, S. G. (1984). The porosity of avian eggshell. Comp. Biochem. Physiol. 78A: 5-13.
  • Türkyılmaz, M.K., Dereli, E. and Şahin, T. (2005). Denizli Tavuklarında Bazı Yumurta Özellikleri ile Yumurtaların Kuluçka İşlemi Sırasındaki Ağırlık Kaybı Üzerine Bir Araştırma. YYÜ Vet. Fak. Derg. 16 (2), 89-92
  • Wagner-Amos, K. and Seymour R.S., (2003). Effect of local shell conductance on the vascularisation of the chicken chorioallantoic membrane. Resp. Physiol. ve Neu. 134, 155-167.
  • Wangensteen, O.D. and Rahn, H. (1970/71). Respiratory gas exchange by the avian embryo. Respir. Physiol. 11, 31-45.
  • Whittow, G.C. and Grant G.S. (1985). Water loss and pipping sequence in the eggs of the Red- Tailed Tropicbird (Phaethon rubricauda). The Auk, 102, 749-753.
  • Zicus, M.C., Rave, D.P. and Riggs M.R. (2003). Mass loss from mallard eggs incubated in nest structures. Wildlife Society Bulletin, 31(1), 270-278.
  • Zicus, M.C., Rave, D.P. and Riggs M.R. (2004). Factors influencing incubation egg-mass loss for three species of waterfowl. The Condor, 106(3). 506-516.

Mass Loss During Incubation in the Hatched and Unhatched Eggs of Peking Duck (Anas platyrhynchos f. dom.)

Year 2008, Issue: 11, 151 - 159, 01.12.2008

Abstract

This study was performed to determine the average mass loss as water loss in the incubated (hatched) and unincubated eggs of Peking ducks and to compare with literature. For this purpose, 76 eggs (58 fertilized and 18 unfertilized) were weighed individually through incubation to determine the egg mass losses. Fertilized and unfertilized eggs were differed in the amount of relative total mass lost during incubation: fertilized eggs lost 11.48% and unfertilized eggs lost 8.87% of initial mass. These values are similar with reported values in the literature. Egg mass lose were increased day after day in fertilized eggs, especially in the second half of incubation, but it was stand firm almost in unfertilized eggs. It is suggested that these increase is due to an increase pore density which is accompanying with increased metabolic rates. It is seemed that our results determined by this study different from values which are estimated from equations in the literature. It is postulated that these differences are due to inter/intraspecific variations of the water content and eggshell conduction of eggs and the incubation environment (e.g., temperature, humidity, atmospheric pressure).

References

  • Ar, A. ve Rahn, H. (1980). Water in the avian egg: Overall budget of incubation. Amer. Zool.
  • Ar, A., Paganelli, C.V., Reeves, R.B., Green, D.G., Rahn, H. (1974). The avian egg: Water vapor conductance, shell thickness, and functional pore area. Condor, 76, 153-158.
  • Balkan, M. & Biricik, M. (2006): Pekin ördeği (Anas platyrhynchos f. dom.)yumurtalarında kabuk kalınlığı, gözenek sayısı ve gözenek yoğunluğundaki bölgesel farklılıklar.- Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2): 193-196.
  • Balkan, M., Karakaş, R. and Biricik, M. (2006). Changes in eggshell thickness, shell conductance and pore density during incubation in the Peking duck (Anas platyrhynchos f. dom.). Ornis Fennica, 83(3), 117-123.
  • Booth, D.T. and Seymour, R.S. (1987). Effect of eggshell thinning on water vapor conductance of malleefowl eggs. Condor, 89, 453-459.
  • Booth, D.T. (1989). Regional changes in shell thickness, shell conductance, and pore structure during incubation in eggs of the mute swan, Physiol. Zool. 62, 607-620.
  • Booth, D.T. and Sotherland, P.R. (1991). Oxygen consumption, air-cell gas tensions, and incubation parameters of mute swan eggs, Physiol. Zool, 64, 473-484.
  • Burton, E.G. and Tullett, S.G. (1983). A comparison of the effect of eggshell porosity on the respiration and growth of domestic fowl, duck and turkey embryos, Comp. Biochem. Physiol., 75, 167-174.
  • Drent, R.H. (1970): Functional aspects of incubation in the Herring gull.— Behav. Suppl. 17: 1- 132.
  • Drent, R.H. (1975). Incubation.— In: Farner, D. S. ve King, J. R.:Avian Biology, Vol. V, Academic Press, New York.
  • Hoyt, D.F., Board, R.G., Rahn, H. and Paganelli, C.V. (1979). The eggs of the Anatidae: Conductance, pore structure and metabolism. Physiological Zoology, 52, 438-450.
  • Kırıkçı, K.¸ Deemıng, D.C., and Günlü, A. (2004). Effects of egg mass and percentage mass loss during incubation on hatchability of eggs of the rock partridge (Alectoris graeca), British Poultry Science, 45, 3, 380–384.
  • Martin P.A., ve Arnold, T.W. (1991). Relationships among fresh mass, incubation time, and water loss in Japanese Quail eggs. Condor, 9 3:28-37.
  • Massaro, M. ve Davis, L.S. (2005). Differences in egg size, shell thickness, pore density, pore diameter and water vapour conductance between first and second eggs of Snares Penguins Eudyptes robustus and their influence on hatching asynchrony, Ibis, 147(2), 251-258.
  • Nakage, E.S., Cardozo, J.P., Pereira, G.T., Queiroz S.A. and Boleli I.C. (2003). Effect of temperature on incubation period, embryonic mortality, hatch rate, egg water loss and partridge chick weight (Rhynchotus rufescens), Rev. Bras. Cienc. Avic. 5(2), 131-135.
  • Pettit, T. N., Whittow, G. C (1983). Water Loss From Pipped Wedge-Tailed Shearwater Eggs. Condor, 85, 107-109
  • Prinzinger, R., Maisch, H. and Hund, K. (1979). Untersuchungen zum Gasstoffwechsel des Vogelembryos: I. Stoffwechselbedingter Gewichtsverlust, Gewichtskorrelation, tägliche Steigerungsrate und relative Gesamtenergieproduktion, Zool. Jb. Physiol., 83, 180-191.
  • Rahn, H. and Ar, A. (1974). The avian egg: Incubation time and water loss. Condor 76, 147- 152.
  • Rahn, H. and Ar, A. (1980). Gas exchange of the avian egg: Time, structure and function. Amer. Zool., 20, 477-484.
  • Rahn, H. and Paganelli, C.V. (1990). Gas fluxes in avian eggs: Driving forces and the pathway for exchange, Comp. Biochem. Physiol., 95A, 1-15.
  • Rahn, H., Paganelli, C.V. and Ar, A. (1974). The avian egg: Air-cell gas tension, metabolism and incubation time, Respir. Physiol. 22, 297-309.
  • Soliman, F.N.K., Rizk, R.E. and Brake J. (1994). Relationship between shell porosity, shell thickness, egg weight loss, and embryonic development in Japanese Quail eggs, Poultry Science, 73, 1607-1611.
  • Sotherland, P.R., Packard, G.C., Taigen, T.L. and Boardman, T.J.(1980). An altitudinal cline in conductance of cliff swallow (Petrocheridon pyrrhonata) eggs to water vapor, Auk
  • Thompson, M.B. and Goldie K.N. (1990). Conductance and structure of eggs of Adelie penguins, Pygoscelis adeliae, and its implications for incubation, Condor, 92(2), 304- 312.
  • Tullett, S. G. (1984). The porosity of avian eggshell. Comp. Biochem. Physiol. 78A: 5-13.
  • Türkyılmaz, M.K., Dereli, E. and Şahin, T. (2005). Denizli Tavuklarında Bazı Yumurta Özellikleri ile Yumurtaların Kuluçka İşlemi Sırasındaki Ağırlık Kaybı Üzerine Bir Araştırma. YYÜ Vet. Fak. Derg. 16 (2), 89-92
  • Wagner-Amos, K. and Seymour R.S., (2003). Effect of local shell conductance on the vascularisation of the chicken chorioallantoic membrane. Resp. Physiol. ve Neu. 134, 155-167.
  • Wangensteen, O.D. and Rahn, H. (1970/71). Respiratory gas exchange by the avian embryo. Respir. Physiol. 11, 31-45.
  • Whittow, G.C. and Grant G.S. (1985). Water loss and pipping sequence in the eggs of the Red- Tailed Tropicbird (Phaethon rubricauda). The Auk, 102, 749-753.
  • Zicus, M.C., Rave, D.P. and Riggs M.R. (2003). Mass loss from mallard eggs incubated in nest structures. Wildlife Society Bulletin, 31(1), 270-278.
  • Zicus, M.C., Rave, D.P. and Riggs M.R. (2004). Factors influencing incubation egg-mass loss for three species of waterfowl. The Condor, 106(3). 506-516.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mahmut Balkan This is me

Murat Biricik This is me

Publication Date December 1, 2008
Published in Issue Year 2008 Issue: 11

Cite

APA Balkan, M., & Biricik, M. (2008). PEKİN ÖRDEĞİNİN (Anas platyrhynchos f. dom.) DÖLLENMİŞ VE DÖLLENMEMİŞ YUMURTALARINDA KULUÇKA SÜRESİNCE GÖRÜLEN KÜTLE KAYBI. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi(11), 151-159.