Araştırma Makalesi
BibTex RIS Kaynak Göster

Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi

Yıl 2017, Cilt: 31 Sayı: 2, 45 - 56, 15.12.2017

Öz

Artan dozlarda uygulanan iki farklı bor (B) kaynağının, mısır bitkisinin kuru madde verimi ve kimi besin elementi alımı üzerine etkisi sera koşullarında araştırılmıştır. Artan dozlarda bor (0, 2.5, 5, 10 mg B kg-1) toprağa boraks (Na2B4O7.10H2O) ve borik asit (H3BO3) şeklinde uygulanmış ve mısır bitkileri 37 gün süre ile yetiştirilmiştir.
Borun artan dozlarının mısır bitkisinin kuru madde verimi, B, fosfor (P) ve magnezyum (Mg) alımı üzerine etkisi istatistiksel olarak önemli bulunmuştur. Boraks ve borik asit dozları mısır bitkisinin B (6.52 - 5.92 mg saksı-1) ve Mg (49.73 - 49.12 mg saksı-1) alımını artırmış ve en yüksek değerler B kaynaklarının 10 mg B kg-1 seviyesinden elde edilmiştir. Kuru madde verimi ve besin elementleri / B alım oranları artan B dozları ile azalma göstermiştir. Kuru madde verimi, B, P ve demir (Fe) alımı üzerine B kaynaklarının etkisi istatistiksel olarak önemli bulunmuştur. Boraks uygulamalarında kaldırılan B ve P değerleri daha yüksek bulunurken, kuru madde verimi ve kaldırılan Fe miktarı borik asit uygulamalarında daha yüksek olmuştur.

Kaynakça

  • Ahmad, W., A. Niaz, S. Kanwal and M. K. Rasheed. 2009. Role of boron in plant growth: A review. Journal of Agricultural Research, 47: 329-338.
  • Ahmad, W., A. Niaz, M.H.S. Zia and S.S. Malhi. 2012. Boron deficiency in soils and crops: A review. INTECH Open Access Publisher.
  • Alpaslan M. and A. Güneş. 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability, and mineral composition of tomato and cucumber plants. Plant and Soil, 236:123–128.
  • Bariya, H., S. Bagtharia and A. Patel. 2014. Boron: A promising nutrient for increasing growth and yield of plants. In: Hawkesford, Malcolm J., Kopriva, Stanislav, De Kok, Luit J. (Eds.) Nutrient Use Efficiency in Plants. Springer International Publishing Switzerland, pp. 153-170.
  • Ben-Gal A. and U. Shani. 2002. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil, 247(2): 211-221.
  • Bestas Z. and H. Celik. 2016. Effects of boron resources and increasing application doses on dry matter boron and potassium uptake of sunflower. Works of the faculty of agriculture and food sciences University of Sarajevo. p. 228-232.
  • Brdar-Jokanović, M., I. Maksimović, M. Kraljević-Balalić, T. Zeremski-Skorić, A. Kondić-Spika and B. Kobiljski. 2013. Boron concentration vs. content as criterion for estimating boron tolerance in wheat. J. Plant Nutr., 36: 470-480.
  • Camacho-Cristóbal J.J., J. Rexach and A. González‐Fontes. 2008. Boron in plants: deficiency and toxicity. J. Integrative Plant Biol., 50 (10): 1247-1255
  • Çikili Y., H. Samet and S. Dursun. 2015. Mutual effects of boron and zinc on peanut (Arachis hypogaea L.) growth and mineral nutrition. Commun. Soil Sci. Plant Anal., 46 (5): 641-651
  • Davis J., M. Sanders, D. C. Nelson, P. V. Lengnick and L. W. J. Sperry. 2003. Boron improves growth, yield, quality, and nutrient content of tomato. J. Amer. Soc. Hort. Sci., 128: 441–446.
  • Eraslan, F. M. Polat, A. Yildirim and Z. Kucukyumuk. 2016. Physiological and Nutritional Responses of Two Distinctive Quince (Ceydonia oblonga Mill.) Rootstocks to Boron Toxicity. Pak. J. Bot 48(1): 75-80.
  • Esim N., D. Tiryaki, O. Karadagoglu and O. Atici. 2012. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicol. Indust. Health, p.1-6.
  • Gezgin S. and M. Hamurcu. 2006. The importance of the nutrient elements interaction and the interactions between boron with the other nutrient elements in plant nutrition. Bitki beslemede besin elementleri arasındaki etkileşimin önemi ve bor ile diğer besin elementleri arasındaki etkileşimler. J. Selçuk Univ. Agric. Fac., 20(39): 24-31.
  • Gimeno, V., Simón, I., Nieves, M., Martínez, V., Cámara-Zapata, J.M., García, A.L. and García-Sánchez, F., 2012. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees, 26(5), pp.1513-1526.
  • Gitanjali B., N. Khurana and C. Chatterjee. 2010. Impact of Boron Deficiency on Changes in Biochemical Attributes, Yield, and Seed Reserves in Chickpea. Commun. Soil Sci. Plant Anal., 41(2): 199-206.
  • Gupta U. C. 2016. Boron, In: Barker A.V. and Pilbeam D.J. (Ed). Handbook of Plant Nutrition, CRC Press, Taylor and Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742. pp 241-277.
  • Güneş A., M. Alpaslan, H. Özcan and Y. Çıkılı. 2000. Türkiye’de yaygın olarak yetiştirilen mısır (Zea mays L.) çeşitlerinin Bor toksisitesine duyarlılıkları. Turk. J. Agric. For. 24:277-282.
  • Hakki E.E., E. Atalay, M. Harmankaya, M. Babaoglu, M. Hamurcu and S. Gezgin. 2007. Determination of suitable maize (Zea mays L.) genotypes to be cultivated in boron-rich central Anatolian soil. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, et al. (eds) Advances in Plant and Animal Boron Nutrition. Wuhan, China: Springer, pp.231–247.
  • Hansen T.H., T.C. de Bang, K. H. Laursen, P. Pedas, S. Husted and J. K. Schjørring. 2013. Multielement plant tissue analysis using ICP spectrometry. In: F.J.M. Maathuis (Ed.), Plant Mineral Nutrients: Methods and Protocols, p.121-141.
  • Hamurcu M., T. Demiral, E. E. Hakkı, Ö. Turkmen, S. Gezgin and R. W. Bell. 2015. Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought. Zemdirbyste-Agric., 102 (2): 209–216.
  • Haque, M.R., M. Robbani M.M. Hasan, M. Asaduzzaman, M.M. Hasan and J.A. Teixeira da Silva. 2014. Zinc and Boron Affect Yield and Quality of Onion (Allium cepa L.) Seed. Int. J. Veget. Sci. 20(2):131-140.
  • Herrera-Rodríguez, M.B., A. González-Fontes, J. Rexach, J.J. Camacho-Cristóbal, J.M. Maldonado and M.T. Navarro-Gochicoa. 2010. Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), pp.115-122.
  • Horneck D. A. and D. Hanson. 1998. Determination of Potassium and Sodium by Flame Emission Spectrophotometry, In: Karla Y.P. (Ed). Handbook of Reference Methods for Plant Analysis, CRC Press, Washington, D.C. pp 157-164.
  • Kaur G. and K. A. Nelson. 2015. Effect of foliar boron fertilization of fine textured soils on corn yields. Agron. 5(1): 1–18.
  • Koohkan H. and M. Maftoun. 2016. Effect of nitrogen– boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.), J. Plant Nutr., 39:7: 922-931.
  • Marx, E.S., Hart, J.M. and Stevens, R.G., 1996. Soil test interpretation guide (No. 1478). Oregon: Oregon State University Extension Service. p. 8.
  • Mattos-Jr, D., Hippler, F.W., Boaretto, R.M., Stuchi, E.S. and Quaggio, J.A., 2017. Soil boron fertilization: the role of nutrient sources and rootstocks in citrus production.
  • Mouhtaridou, G. N., T. E. Sotiropoulos, K. N. Dimassi and I. N. Therios. 2004. Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM 106 cultured in vitro. Biologia Plantarum 48(4): 617-619.
  • Müftüoğlu, N.M., C. Türkmen, and Y. Çıkılı. 2014. Toprak ve Bitkide Verimlilik Analizleri. Nobel Yayınevi. 218 p.
  • Olson S. M., D. N. Maynard, G. J. Hochmuth, C. S. Vavrina, W. M. Stall, T. A. Kucharek, S. E. Webb, T. G. Taylor, S. A. Smith and E. H. Simonne. 2012. Tomato production in Florida (IFAS Extension HS739). University of Florida.
  • Özsoy G. and E. Aksoy. 2013. Properties and classification of irrigated and non- irrigated Vertisols formed under Mediterranean climate. J. Food, Agric. Environ., 11(3&4): 2478-2480.
  • Öztürk, Ö., S. Soylu, R. Ada, S. Gezgin and M. Babaoğlu. 2010. Studies on differential response of spring canola cultivars to boron toxicity. J. Plant Nutr. 33(8): 1141-1154.
  • Reid R. 2007. Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L, eds. Advances in Plant and Animal Boron Nutrition. Springer, Dordrecht, the Netherlands, pp. 83-90.
  • Siddiqui M. H., M. H. Al-Whaibi, A. M. Sakran, H. M. Ali, M. O. Basalah, M. Faisal, A. Alatar and A. A. Al-Amri. 2013. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul., 32 (1): 61–71.
  • Sotiropoulos, T. E., I. N. Therios, V. Tsirakoglou and K. N. Dimassi. 2007. Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. Int. J. of Fruit Sci. 6(4): 93-101.
  • Tanaka M. and T. Fujiwara. 2008. Physiological roles and transport mechanisms of boron: perspectives from

Effects of Increasing Application Doses of Borax and Boric acid on Nutrient Element Uptake of Maize (Zea mays L.)

Yıl 2017, Cilt: 31 Sayı: 2, 45 - 56, 15.12.2017

Öz

Effects of two boron (B) sources and increasing application doses of both sources on the dry matter yield, B and some nutrients uptake by maize (Zea mays L.) were investigated in greenhouse conditions. Increasing doses of boron (0, 2.5, 5, and 10 mg B kg-1) were applied to soil as borax (Na2B4O7.10H2O) and boric acid (H3BO3) and maize plants were grown for 37 days.

Increasing doses of B were found statistically significant on dry matter yield, boron, phosphorus (P), and magnesium (Mg) uptake. Borax and boric acid doses elevated the B (6.52 - 5.92 mg pot-1) and Mg (49.73 - 49.12 mg pot-1) uptake of maize and the highest values observed at 10.0 mg B kg-1 dose of both borax and boric acid, respectively. Dry matter yield and the nutrient elements uptake / B uptake ratios decreased with the increasing B applications. Boron sources found statistically significant on the amounts of dry matter yield, B, P, and iron (Fe) uptake. Up taken B and P amounts were found high at Borax applications, however, dry matter yield, and Fe uptake was found higher at boric acid applications.

Kaynakça

  • Ahmad, W., A. Niaz, S. Kanwal and M. K. Rasheed. 2009. Role of boron in plant growth: A review. Journal of Agricultural Research, 47: 329-338.
  • Ahmad, W., A. Niaz, M.H.S. Zia and S.S. Malhi. 2012. Boron deficiency in soils and crops: A review. INTECH Open Access Publisher.
  • Alpaslan M. and A. Güneş. 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability, and mineral composition of tomato and cucumber plants. Plant and Soil, 236:123–128.
  • Bariya, H., S. Bagtharia and A. Patel. 2014. Boron: A promising nutrient for increasing growth and yield of plants. In: Hawkesford, Malcolm J., Kopriva, Stanislav, De Kok, Luit J. (Eds.) Nutrient Use Efficiency in Plants. Springer International Publishing Switzerland, pp. 153-170.
  • Ben-Gal A. and U. Shani. 2002. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil, 247(2): 211-221.
  • Bestas Z. and H. Celik. 2016. Effects of boron resources and increasing application doses on dry matter boron and potassium uptake of sunflower. Works of the faculty of agriculture and food sciences University of Sarajevo. p. 228-232.
  • Brdar-Jokanović, M., I. Maksimović, M. Kraljević-Balalić, T. Zeremski-Skorić, A. Kondić-Spika and B. Kobiljski. 2013. Boron concentration vs. content as criterion for estimating boron tolerance in wheat. J. Plant Nutr., 36: 470-480.
  • Camacho-Cristóbal J.J., J. Rexach and A. González‐Fontes. 2008. Boron in plants: deficiency and toxicity. J. Integrative Plant Biol., 50 (10): 1247-1255
  • Çikili Y., H. Samet and S. Dursun. 2015. Mutual effects of boron and zinc on peanut (Arachis hypogaea L.) growth and mineral nutrition. Commun. Soil Sci. Plant Anal., 46 (5): 641-651
  • Davis J., M. Sanders, D. C. Nelson, P. V. Lengnick and L. W. J. Sperry. 2003. Boron improves growth, yield, quality, and nutrient content of tomato. J. Amer. Soc. Hort. Sci., 128: 441–446.
  • Eraslan, F. M. Polat, A. Yildirim and Z. Kucukyumuk. 2016. Physiological and Nutritional Responses of Two Distinctive Quince (Ceydonia oblonga Mill.) Rootstocks to Boron Toxicity. Pak. J. Bot 48(1): 75-80.
  • Esim N., D. Tiryaki, O. Karadagoglu and O. Atici. 2012. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicol. Indust. Health, p.1-6.
  • Gezgin S. and M. Hamurcu. 2006. The importance of the nutrient elements interaction and the interactions between boron with the other nutrient elements in plant nutrition. Bitki beslemede besin elementleri arasındaki etkileşimin önemi ve bor ile diğer besin elementleri arasındaki etkileşimler. J. Selçuk Univ. Agric. Fac., 20(39): 24-31.
  • Gimeno, V., Simón, I., Nieves, M., Martínez, V., Cámara-Zapata, J.M., García, A.L. and García-Sánchez, F., 2012. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees, 26(5), pp.1513-1526.
  • Gitanjali B., N. Khurana and C. Chatterjee. 2010. Impact of Boron Deficiency on Changes in Biochemical Attributes, Yield, and Seed Reserves in Chickpea. Commun. Soil Sci. Plant Anal., 41(2): 199-206.
  • Gupta U. C. 2016. Boron, In: Barker A.V. and Pilbeam D.J. (Ed). Handbook of Plant Nutrition, CRC Press, Taylor and Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742. pp 241-277.
  • Güneş A., M. Alpaslan, H. Özcan and Y. Çıkılı. 2000. Türkiye’de yaygın olarak yetiştirilen mısır (Zea mays L.) çeşitlerinin Bor toksisitesine duyarlılıkları. Turk. J. Agric. For. 24:277-282.
  • Hakki E.E., E. Atalay, M. Harmankaya, M. Babaoglu, M. Hamurcu and S. Gezgin. 2007. Determination of suitable maize (Zea mays L.) genotypes to be cultivated in boron-rich central Anatolian soil. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, et al. (eds) Advances in Plant and Animal Boron Nutrition. Wuhan, China: Springer, pp.231–247.
  • Hansen T.H., T.C. de Bang, K. H. Laursen, P. Pedas, S. Husted and J. K. Schjørring. 2013. Multielement plant tissue analysis using ICP spectrometry. In: F.J.M. Maathuis (Ed.), Plant Mineral Nutrients: Methods and Protocols, p.121-141.
  • Hamurcu M., T. Demiral, E. E. Hakkı, Ö. Turkmen, S. Gezgin and R. W. Bell. 2015. Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought. Zemdirbyste-Agric., 102 (2): 209–216.
  • Haque, M.R., M. Robbani M.M. Hasan, M. Asaduzzaman, M.M. Hasan and J.A. Teixeira da Silva. 2014. Zinc and Boron Affect Yield and Quality of Onion (Allium cepa L.) Seed. Int. J. Veget. Sci. 20(2):131-140.
  • Herrera-Rodríguez, M.B., A. González-Fontes, J. Rexach, J.J. Camacho-Cristóbal, J.M. Maldonado and M.T. Navarro-Gochicoa. 2010. Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), pp.115-122.
  • Horneck D. A. and D. Hanson. 1998. Determination of Potassium and Sodium by Flame Emission Spectrophotometry, In: Karla Y.P. (Ed). Handbook of Reference Methods for Plant Analysis, CRC Press, Washington, D.C. pp 157-164.
  • Kaur G. and K. A. Nelson. 2015. Effect of foliar boron fertilization of fine textured soils on corn yields. Agron. 5(1): 1–18.
  • Koohkan H. and M. Maftoun. 2016. Effect of nitrogen– boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.), J. Plant Nutr., 39:7: 922-931.
  • Marx, E.S., Hart, J.M. and Stevens, R.G., 1996. Soil test interpretation guide (No. 1478). Oregon: Oregon State University Extension Service. p. 8.
  • Mattos-Jr, D., Hippler, F.W., Boaretto, R.M., Stuchi, E.S. and Quaggio, J.A., 2017. Soil boron fertilization: the role of nutrient sources and rootstocks in citrus production.
  • Mouhtaridou, G. N., T. E. Sotiropoulos, K. N. Dimassi and I. N. Therios. 2004. Effects of boron on growth, and chlorophyll and mineral contents of shoots of the apple rootstock MM 106 cultured in vitro. Biologia Plantarum 48(4): 617-619.
  • Müftüoğlu, N.M., C. Türkmen, and Y. Çıkılı. 2014. Toprak ve Bitkide Verimlilik Analizleri. Nobel Yayınevi. 218 p.
  • Olson S. M., D. N. Maynard, G. J. Hochmuth, C. S. Vavrina, W. M. Stall, T. A. Kucharek, S. E. Webb, T. G. Taylor, S. A. Smith and E. H. Simonne. 2012. Tomato production in Florida (IFAS Extension HS739). University of Florida.
  • Özsoy G. and E. Aksoy. 2013. Properties and classification of irrigated and non- irrigated Vertisols formed under Mediterranean climate. J. Food, Agric. Environ., 11(3&4): 2478-2480.
  • Öztürk, Ö., S. Soylu, R. Ada, S. Gezgin and M. Babaoğlu. 2010. Studies on differential response of spring canola cultivars to boron toxicity. J. Plant Nutr. 33(8): 1141-1154.
  • Reid R. 2007. Update on boron toxicity and tolerance in plants. In: Xu F, Goldbach HE, Brown PH, Bell RW, Fujiwara T, Hunt CD, Goldberg S, Shi L, eds. Advances in Plant and Animal Boron Nutrition. Springer, Dordrecht, the Netherlands, pp. 83-90.
  • Siddiqui M. H., M. H. Al-Whaibi, A. M. Sakran, H. M. Ali, M. O. Basalah, M. Faisal, A. Alatar and A. A. Al-Amri. 2013. Calcium-induced amelioration of boron toxicity in radish. J. Plant Growth Regul., 32 (1): 61–71.
  • Sotiropoulos, T. E., I. N. Therios, V. Tsirakoglou and K. N. Dimassi. 2007. Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity. Int. J. of Fruit Sci. 6(4): 93-101.
  • Tanaka M. and T. Fujiwara. 2008. Physiological roles and transport mechanisms of boron: perspectives from
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Hakan Çelik

Sencer Öztüfekçi Bu kişi benim

Murat Ali Turan Bu kişi benim

Barış Bülent Aşık Bu kişi benim

Ali Vahap Katkat Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 31 Sayı: 2

Kaynak Göster

APA Çelik, H., Öztüfekçi, S., Turan, M. A., Aşık, B. B., vd. (2017). Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 31(2), 45-56.
AMA Çelik H, Öztüfekçi S, Turan MA, Aşık BB, Katkat AV. Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi. Uludag Üniv. Ziraat Fak. Derg. Aralık 2017;31(2):45-56.
Chicago Çelik, Hakan, Sencer Öztüfekçi, Murat Ali Turan, Barış Bülent Aşık, ve Ali Vahap Katkat. “Artan Dozlarda Uygulanan Boraks Ve Borik Asidin Mısır (Zea Mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31, sy. 2 (Aralık 2017): 45-56.
EndNote Çelik H, Öztüfekçi S, Turan MA, Aşık BB, Katkat AV (01 Aralık 2017) Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31 2 45–56.
IEEE H. Çelik, S. Öztüfekçi, M. A. Turan, B. B. Aşık, ve A. V. Katkat, “Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi”, Uludag Üniv. Ziraat Fak. Derg., c. 31, sy. 2, ss. 45–56, 2017.
ISNAD Çelik, Hakan vd. “Artan Dozlarda Uygulanan Boraks Ve Borik Asidin Mısır (Zea Mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 31/2 (Aralık 2017), 45-56.
JAMA Çelik H, Öztüfekçi S, Turan MA, Aşık BB, Katkat AV. Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi. Uludag Üniv. Ziraat Fak. Derg. 2017;31:45–56.
MLA Çelik, Hakan vd. “Artan Dozlarda Uygulanan Boraks Ve Borik Asidin Mısır (Zea Mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi”. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, c. 31, sy. 2, 2017, ss. 45-56.
Vancouver Çelik H, Öztüfekçi S, Turan MA, Aşık BB, Katkat AV. Artan Dozlarda Uygulanan Boraks ve Borik Asidin Mısır (Zea mays L.) Bitkisinin Besin Elementi Alımı Üzerine Etkisi. Uludag Üniv. Ziraat Fak. Derg. 2017;31(2):45-56.