Review
BibTex RIS Cite

İklim Değişikliğinin Tahıl Virüs Hastalıkları Üzerine Etkisi

Year 2022, Issue: 374, 4 - 14, 30.04.2022
https://doi.org/10.33724/zm.972677

Abstract

İklim değişikliğinin tüm ekosistemler üzerinde etkisini arttırarak, küresel ve bölgesel ölçeklerde hissedilir bir şekilde ortaya çıkması tahmin edilmektedir. Toprak ve su rejimleri değişime uğrayarak, tarım arazilerini verimsizleştirmesi, zararlı-hastalıkların çoğalmasına sebep olması ve tüm tarımsal ekosistemleri tahrip etmesi beklenmektedir. İklim değişikliklerinin bitkisel üretimde verim ve kalite kaybına yol açacak olması, kayıpların nedeninin doğru bir şekilde anlaşılmasını engellemektedir. Dolayısıyla orta ve uzun vadede etkinliği artacağı düşünülen hastalıkların oluşturacağı risk dikkate alınmalıdır. Bu konuda çok yönlü birçok çalışma yapılması gereklidir. Aksi takdirde verimdeki düşüşler gibi olumsuzlukların çevre koşullarındaki değişimden kaynaklı olduğuna odaklanılarak viral patojenler gibi biyotik faktörler göz ardı edilecektir. Bu derlemede, stres altında kalan tarımsal ekolojide, tahıl hastalıklarının önemli bir zararlı organizma grubu olan viral patojenlerin gelecekte oluşturabileceği riskler değerlendirilmiştir. Özellikle böcek ve akar vektörü ile taşınan Barley yellow dwarf virus (BYDV), Wheat dwarf virus (WDV) ve Wheat streak mosaic virus (WSMV) gibi virüslerin yakın gelecekte Türkiye’de tahıl ekiliş alanlarında etkisini arttırabileceği öngörülürken, Soil-borne wheat mosaic virus (SBWMV), Barley yellow mosaic virus (BaYMV) gibi plazmodioforidler ile taşınan virüslerin etkinliğinin lokasyona göre değişkenlik göstereceği öngörülmektedir. Dolayısıyla iklim değişikliğinin lokasyona ve vektöre bağlı olarak bazı tahıl virüslerinin etkinliğini arttırırken bazılarının etkinliğini azaltacağı yönündedir.

References

  • Agrios, G. N. (2005). Plant pathology. Elsevier Academic Press, 5th edition, 922p.
  • Akbaş, B. (2018). İklim değişikliği bitki hastalıklarının artmasına neden oluyor. Türk Tarım Orman Dergisi, Eylül Ekim 2018, 72-74 s.
  • Anonim, (2021a). IPCC 1.5oC raporu. https://www.birbucukderece.com/15derecerapor/ (Erişim tarihi: 27.09.2021).
  • Anonim, (2021b). Yeni senaryolar ile Türkiye iklim projeksiyonları ve iklim değişikliği https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=projeksiyonlar (Erişim tarihi: 27.09.2021).
  • Anonymous, (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change. Geneva, Switzerland:
  • Aydınalp, C. and Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(5), 672-676.
  • Asseng, S., Foster, I., Turner, N.C. (2011). The impact of temperature variability on wheat yields. Glob. Chang. Biol. 17, 997–1012.
  • Bindi, M. and Olesen, J. E. (2000). “Agriculture”, Assessment of Potential Effects and Adaptations for Climate Change in Europe: The Europe ACACIA Project (Ed).M. L. Parry. Norwich, United Kingdom: Jackson Environment Institute, University of East Anglia.
  • Bosque-Pérez, N. A. ve Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus research, 159(2), 201-205.
  • Chakraborty, S. and Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant pathology, 60(1), 2-14.
  • Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research: Atmospheres, 121(5), 2060-2074.
  • Coutts, B. A., Strickland, G. R., Kehoe, M. A., Severtson, D. L., Jones, R. A. C. (2008). The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors, and alternative hosts. Australian Journal of Agricultural Research, 59:844–53.
  • Darwin, R., Tsigas M., Lewandrowski, J. and Raneses, A. (1995). World Agriculture and Climate Change: Economic Adaptations. Agricultural Economic Report 703, U.S. Department of Agriculture, Economic Research Service, Washington, D.C.
  • Das, T., Majumdar, M. H. D., Devi, R. T. and Rajesh, T. (2016). Climate change impacts on plant diseases. SAARC Journal of Agriculture, 14(2), 200-209. doi: http://dx.doi.org/10.3329/sja.v14i2.31259.
  • Davis, T. S., Bosque‐Pérez, N. A., Foote, N. E., Magney, T., Eigenbrode, S. D. (2015). Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. Journal of Applied Ecology, 52(5), 1392-1401.
  • Eruygur, O. and Özokcu, S. (2016). Impacts of climate change on wheat yield in Turkey: A heterogeneous panel study. Ekonomik Yaklasim, 27(101), 219-255.
  • FAO. (2009). Food and Agriculture Organization. How to feed the World in 2050–executive summary. Proceedings of the Expert Meeting on How to Feed the World in 2050. Rome, Italy:
  • Finlay, K. J. and Luck, J. E. (2011). Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virüs pathosystem. Agriculture, Ecosystems and Environment, 144: 405–421.
  • Gammans, M., Mérel, P. and Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Environmental Research Letters, 12(5), 054007.
  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol., 44, 489-509.
  • Hamilton, R. I. and Nichols, C. (1977). The influence of bromegrass mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare. Phytopathology, 67:484–9.
  • Harrington, R. (2007). Viruses, vectors, host plants and environment: from complexity to control. Abstracts NJF Seminar 402: Virus Vector Management in a Changing Climate, Kristianstad, 9-11 October 2007. pp. 9-11.
  • Högy, P. and Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci., 48,580–591.
  • Hull, R. (2013). Plant Virology. Academic press.
  • Huusela-Veistola, E. (2007). Overview of vectors of cereal viruses in Finland. In: NJF Report, Nordic Association of Agricultural Scientists, 3(5), pp. 27-28.
  • İlbağı, H. (2020). Tahıllarda sarı cücelik virüs hastalıkları ve mücadele yöntemleri. Bisab yayınları, Ankara. 146s.
  • Ingwell, L. L., Eigenbrode, S. D., Bosque-Pérez, N. A. (2012). Plant viruses alter insect behavior to enhance their spread. Scientific reports, 2(1), 1-6.
  • Irwin, M. E., Thresh, J. M. (1988). Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 1988:321:421–46.
  • Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H., Eigenbrode, S. D. (2004). Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environmental Entomology, 33(5), 1207-1216.
  • Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res., 141 (2), 113–130.
  • Jones, R. A. and Barbetti, M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sciences Reviews, 22, 1-31.
  • Jones, R. A. C. (2016). Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Advances in Virus Research, Vol. 95. Elsevier, pp. 87–147.
  • Jones, R. A. and Naidu, R. A. (2019). Global dimensions of plant virus diseases: Current status and future perspectives. Annual review of virology, 6, 387-409.
  • Kuhne, T. (2009). Soil-borne viruses affecting cereals: known for long but still a threat. Virus Research, 141:174–83.
  • Lucio-Zavaleta, E., Smith, D. M., Gray, S. M. (2001). Variation in transmission efficiency among Barley yellow dwarf virus-RMV isolates and clones of the normally inefficient aphid vector, Rhopalosiphum padi. Phytopathology, 91(8), 792-796.
  • Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., hakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60(1), 113-121.
  • Mackerron, D., Boag, B., Duncan, J. M., Harrison, J. G. and Woodford, J. A. T. (1993). The prospect of climate change and its implications for crop pests and diseases. P. 181-93. In D. Ebbels (Eds.) Plant Health and the European Single Market. Farnham: British Crop Production Council
  • Malmström, C. M., & Field, C. B. (1997). Virus‐induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell & Environment, 20(2), 178-188.
  • Mauck, K., Bosque‐Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M., Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. Functional Ecology, 26(5), 1162-1175.
  • Meehl, G.A., Washington, W.M., Collins, W.D. (2005). How much more global warming and sea level rise. Science, 307, 1769–72.
  • Morca, A.F., Coskan, S., Akbas, B. (2021). Phylogenetic diversity of barley- and wheat-specific forms of Wheat dwarf virus in Turkey. Cereal Research Communications. DOI: https://doi.org/10.1007/s42976-021-00219-0
  • Nancarrow, N., Constable, F. E., Finlay, K. J., Freeman, A. J., Rodoni, B. C., Trebicki, P., Luck, J. E. (2014). The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Research, 186, 97-103.
  • Olsen, A. J., Pataky, J. K., D’arcy, C. J. and Ford, R. E. (1990). Effects of drought stress and infection by Maize dwarf mosaic virus (MDMV) in sweet corn. Plant Disease, 74: 147-151.
  • Parizipour, M. H. G., Ramazani, L., Sardrood, B. P. (2018). Temperature affected transmission, symptom development and accumulation of Wheat Dwarf Virus. Plant Protect. Sci. Vol. 54, 2018, No. 4: 222–233.
  • Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., Bloomfield, J. (2002). Increased crop damage in the US from excess precipitation under climate change. Global Environmental Change, 12(3), 197-202.
  • Sastry, K. S., Zitter, T. A. (2014). Management of Virus and Viroid Diseases of Crops in the Tropics. Plant Virus and Viroid Diseases in the Tropics. Springer, pp. 149–480.
  • Singh, K., Wegulo, S. N., Skoracka, A., Kundu, J. K. (2018.) Wheat streak mosaic virus: a century old virus with rising importance worldwide. Molecular Plant Pathology, 19(9), 219 3–2206.
  • Smyrnioudis, I. N., Harrington, R., Katis, N., Clark, S. J. (2000). The effect of drought stress and temperature on spread of barley yellow dwarf virus (BYDV). Agricultural and Forest Entomology, 2(3), 161-166. https://doi.org/10.1046/j.1461-9563.2000.00064.x
  • Smyrnioudis, I. N., Harrington, R., Hall, M., Katis, N., Clark, S. J. (2001). The effect of temperature on variation in transmission of a BYDV PAV-like isolate by clones of Rhopalosiphum padi and Sitobion avenae. European Journal of Plant Pathology, 107(2), 167-173.
  • Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., Zalucki, M. P. (2011). Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2(2), 220-237.
  • Szczepaniec, A. and Finke, D. (2019). Plant-vector-pathogen interactions in the context of drought stress. Frontiers in Ecology and Evolution, 7, 262.
  • Tenllado, F., Canto T. (2020). Effects of a changing environment on the defenses of plants to viruses. Current Opinion in Virology, 42:40–46. https://doi.org/10.1016/j.coviro.2020.04.007
  • Thresh, J. M. (1983). The long-range dispersal of plant viruses by arthropod vectors. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 302:497–528.
  • Trębicki, P., Nancarrow, N., Cole, E., Bosque‐Pérez, N. A., Constable, F. E., Freeman, A. J., Fitzgerald, G. J. (2015). Virus disease in wheat predicted to increase with a changing climate. Global Change Biology, 21(9), 3511-3519.
  • Trębicki, P., Vandegeer, R. K., Bosque-Perez, N .A., Powell, K. S., Dader, B., Freeman, A. J., Yen, A. L., Fitzgerald, G. J., Luck, J. E., (2016). Virus infection mediates the effects of elevated CO2 on plants and vectors. Scientific Reports, 6, 22785.
  • Trębicki, P., Dáder, B., Vassiliadis, S., Fereres, A. (2017a). Insect–plant–pathogen interactionsmas shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Science, 24 (6), 975–989.
  • Trębicki, P., Nancarrow, N., Bosque-Pérez, N. A., Rodoni, B., Aftab, M., Freeman, A., ... and Fitzgerald, G. J. (2017b). Virus incidence in wheat increases under elevated CO2: A 4-year study of yellow dwarf viruses from a free air carbon dioxide facility. Virus research, 241, 137-144.
  • Trębicki, P., Finlay, K. (2019). Pests and diseases under climate change; its threat to foodmsecurity. Food Security Climate Change, 229–250.
  • Trębicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286:1-7.
  • U.N. (2015). World population prospects: the 2015 revision, key findings and advance tables. United Nations Department of Economic and Social Affairs and Population Division, Working Paper No ESA/P/WP. 241.
  • U. N. (2019). World population prospects 2019: Highlights. New York, NY: United Nations Department for Economic and Social Affairs.
  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4):911-21. doi: 10.1111/j.1469-8137.2008.02627.x. Epub 2008 Sep 23. Erratum in: New Phytologist, 2009;184(1):275. PMID: 18823313.
  • You, L., Rosegrant, M. W., Wood, S., Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149(6-7), 1009-1014.
  • Velásquez, A. C., Castroverde, C. D. M., He, S. Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28(10), R619-R634.
  • Vassiliadis, S., Plummer, K. M., Powell, K. S., Trębicki, P., Luck, J. E., and Rochfort, S. J. (2016). The effect of elevated CO2 and virus infection on the primary metabolism of wheat. Functional Plant Biology, 43(9), 892-902.
  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326-9331.

Impact of Climate Change on Cereal Virus Diseases

Year 2022, Issue: 374, 4 - 14, 30.04.2022
https://doi.org/10.33724/zm.972677

Abstract

Climate change is expected to emerge noticeably at global and regional scales, increasing its impact on the entire ecosystem. It is also anticipated that soil and water regimes will undergo change, making soils unproductive, getting worse the condition of agricultural lands, causing the increase of pests and diseases, and destroying all agricultural ecosystems. The risk of diseases that are thought to increase in the long term should be taken into account. However, the lack of sufficient work on this subject and the fact that climate changes lead to a loss of yield will prevent a correct understanding of the cause of losses. Many studies need to be done on this subject. Otherwise, biotic factors such as viral pathogens will be ignored, focusing on the fact that negativities such as decreases in productivity due to climate change are thought to be caused by changes in environmental conditions. In this review, the future risks of cereal viruses are evaluated in agricultural ecology under stress. It is predicted that while especially insect-borne viruses such as Barley yellow dwarf virus (BYDV), Wheat dwarf virus (WDV), and Wheat streak mosaic virus (WSMV) may increase their effect in cereal cultivation areas in Turkey in near future, plasmodiophorid borne viruses such as Soil-borne wheat mosaic virus (SBWMV) and Barley yellow mosaic virus (BaYMV) may vary from location to location. Therefore, climate change will increase the efficiency of some cereal viruses depending on the location and the vector while reducing the effectiveness of some.

References

  • Agrios, G. N. (2005). Plant pathology. Elsevier Academic Press, 5th edition, 922p.
  • Akbaş, B. (2018). İklim değişikliği bitki hastalıklarının artmasına neden oluyor. Türk Tarım Orman Dergisi, Eylül Ekim 2018, 72-74 s.
  • Anonim, (2021a). IPCC 1.5oC raporu. https://www.birbucukderece.com/15derecerapor/ (Erişim tarihi: 27.09.2021).
  • Anonim, (2021b). Yeni senaryolar ile Türkiye iklim projeksiyonları ve iklim değişikliği https://www.mgm.gov.tr/iklim/iklim-degisikligi.aspx?s=projeksiyonlar (Erişim tarihi: 27.09.2021).
  • Anonymous, (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change. Geneva, Switzerland:
  • Aydınalp, C. and Cresser, M. S. (2008). The effects of global climate change on agriculture. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(5), 672-676.
  • Asseng, S., Foster, I., Turner, N.C. (2011). The impact of temperature variability on wheat yields. Glob. Chang. Biol. 17, 997–1012.
  • Bindi, M. and Olesen, J. E. (2000). “Agriculture”, Assessment of Potential Effects and Adaptations for Climate Change in Europe: The Europe ACACIA Project (Ed).M. L. Parry. Norwich, United Kingdom: Jackson Environment Institute, University of East Anglia.
  • Bosque-Pérez, N. A. ve Eigenbrode, S. D. (2011). The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus research, 159(2), 201-205.
  • Chakraborty, S. and Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant pathology, 60(1), 2-14.
  • Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M., & Cook, E. R. (2016). Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research: Atmospheres, 121(5), 2060-2074.
  • Coutts, B. A., Strickland, G. R., Kehoe, M. A., Severtson, D. L., Jones, R. A. C. (2008). The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors, and alternative hosts. Australian Journal of Agricultural Research, 59:844–53.
  • Darwin, R., Tsigas M., Lewandrowski, J. and Raneses, A. (1995). World Agriculture and Climate Change: Economic Adaptations. Agricultural Economic Report 703, U.S. Department of Agriculture, Economic Research Service, Washington, D.C.
  • Das, T., Majumdar, M. H. D., Devi, R. T. and Rajesh, T. (2016). Climate change impacts on plant diseases. SAARC Journal of Agriculture, 14(2), 200-209. doi: http://dx.doi.org/10.3329/sja.v14i2.31259.
  • Davis, T. S., Bosque‐Pérez, N. A., Foote, N. E., Magney, T., Eigenbrode, S. D. (2015). Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. Journal of Applied Ecology, 52(5), 1392-1401.
  • Eruygur, O. and Özokcu, S. (2016). Impacts of climate change on wheat yield in Turkey: A heterogeneous panel study. Ekonomik Yaklasim, 27(101), 219-255.
  • FAO. (2009). Food and Agriculture Organization. How to feed the World in 2050–executive summary. Proceedings of the Expert Meeting on How to Feed the World in 2050. Rome, Italy:
  • Finlay, K. J. and Luck, J. E. (2011). Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virüs pathosystem. Agriculture, Ecosystems and Environment, 144: 405–421.
  • Gammans, M., Mérel, P. and Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Environmental Research Letters, 12(5), 054007.
  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol., 44, 489-509.
  • Hamilton, R. I. and Nichols, C. (1977). The influence of bromegrass mosaic virus on the replication of tobacco mosaic virus in Hordeum vulgare. Phytopathology, 67:484–9.
  • Harrington, R. (2007). Viruses, vectors, host plants and environment: from complexity to control. Abstracts NJF Seminar 402: Virus Vector Management in a Changing Climate, Kristianstad, 9-11 October 2007. pp. 9-11.
  • Högy, P. and Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci., 48,580–591.
  • Hull, R. (2013). Plant Virology. Academic press.
  • Huusela-Veistola, E. (2007). Overview of vectors of cereal viruses in Finland. In: NJF Report, Nordic Association of Agricultural Scientists, 3(5), pp. 27-28.
  • İlbağı, H. (2020). Tahıllarda sarı cücelik virüs hastalıkları ve mücadele yöntemleri. Bisab yayınları, Ankara. 146s.
  • Ingwell, L. L., Eigenbrode, S. D., Bosque-Pérez, N. A. (2012). Plant viruses alter insect behavior to enhance their spread. Scientific reports, 2(1), 1-6.
  • Irwin, M. E., Thresh, J. M. (1988). Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 1988:321:421–46.
  • Jiménez-Martínez, E. S., Bosque-Pérez, N. A., Berger, P. H., Zemetra, R. S., Ding, H., Eigenbrode, S. D. (2004). Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus–infected transgenic and untransformed wheat. Environmental Entomology, 33(5), 1207-1216.
  • Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res., 141 (2), 113–130.
  • Jones, R. A. and Barbetti, M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. Plant Sciences Reviews, 22, 1-31.
  • Jones, R. A. C. (2016). Future Scenarios for Plant Virus Pathogens as Climate Change Progresses. Advances in Virus Research, Vol. 95. Elsevier, pp. 87–147.
  • Jones, R. A. and Naidu, R. A. (2019). Global dimensions of plant virus diseases: Current status and future perspectives. Annual review of virology, 6, 387-409.
  • Kuhne, T. (2009). Soil-borne viruses affecting cereals: known for long but still a threat. Virus Research, 141:174–83.
  • Lucio-Zavaleta, E., Smith, D. M., Gray, S. M. (2001). Variation in transmission efficiency among Barley yellow dwarf virus-RMV isolates and clones of the normally inefficient aphid vector, Rhopalosiphum padi. Phytopathology, 91(8), 792-796.
  • Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., hakraborty, S. (2011). Climate change and diseases of food crops. Plant Pathology, 60(1), 113-121.
  • Mackerron, D., Boag, B., Duncan, J. M., Harrison, J. G. and Woodford, J. A. T. (1993). The prospect of climate change and its implications for crop pests and diseases. P. 181-93. In D. Ebbels (Eds.) Plant Health and the European Single Market. Farnham: British Crop Production Council
  • Malmström, C. M., & Field, C. B. (1997). Virus‐induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell & Environment, 20(2), 178-188.
  • Mauck, K., Bosque‐Pérez, N. A., Eigenbrode, S. D., De Moraes, C. M., Mescher, M. C. (2012). Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. Functional Ecology, 26(5), 1162-1175.
  • Meehl, G.A., Washington, W.M., Collins, W.D. (2005). How much more global warming and sea level rise. Science, 307, 1769–72.
  • Morca, A.F., Coskan, S., Akbas, B. (2021). Phylogenetic diversity of barley- and wheat-specific forms of Wheat dwarf virus in Turkey. Cereal Research Communications. DOI: https://doi.org/10.1007/s42976-021-00219-0
  • Nancarrow, N., Constable, F. E., Finlay, K. J., Freeman, A. J., Rodoni, B. C., Trebicki, P., Luck, J. E. (2014). The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Research, 186, 97-103.
  • Olsen, A. J., Pataky, J. K., D’arcy, C. J. and Ford, R. E. (1990). Effects of drought stress and infection by Maize dwarf mosaic virus (MDMV) in sweet corn. Plant Disease, 74: 147-151.
  • Parizipour, M. H. G., Ramazani, L., Sardrood, B. P. (2018). Temperature affected transmission, symptom development and accumulation of Wheat Dwarf Virus. Plant Protect. Sci. Vol. 54, 2018, No. 4: 222–233.
  • Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., Bloomfield, J. (2002). Increased crop damage in the US from excess precipitation under climate change. Global Environmental Change, 12(3), 197-202.
  • Sastry, K. S., Zitter, T. A. (2014). Management of Virus and Viroid Diseases of Crops in the Tropics. Plant Virus and Viroid Diseases in the Tropics. Springer, pp. 149–480.
  • Singh, K., Wegulo, S. N., Skoracka, A., Kundu, J. K. (2018.) Wheat streak mosaic virus: a century old virus with rising importance worldwide. Molecular Plant Pathology, 19(9), 219 3–2206.
  • Smyrnioudis, I. N., Harrington, R., Katis, N., Clark, S. J. (2000). The effect of drought stress and temperature on spread of barley yellow dwarf virus (BYDV). Agricultural and Forest Entomology, 2(3), 161-166. https://doi.org/10.1046/j.1461-9563.2000.00064.x
  • Smyrnioudis, I. N., Harrington, R., Hall, M., Katis, N., Clark, S. J. (2001). The effect of temperature on variation in transmission of a BYDV PAV-like isolate by clones of Rhopalosiphum padi and Sitobion avenae. European Journal of Plant Pathology, 107(2), 167-173.
  • Sutherst, R. W., Constable, F., Finlay, K. J., Harrington, R., Luck, J., Zalucki, M. P. (2011). Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2(2), 220-237.
  • Szczepaniec, A. and Finke, D. (2019). Plant-vector-pathogen interactions in the context of drought stress. Frontiers in Ecology and Evolution, 7, 262.
  • Tenllado, F., Canto T. (2020). Effects of a changing environment on the defenses of plants to viruses. Current Opinion in Virology, 42:40–46. https://doi.org/10.1016/j.coviro.2020.04.007
  • Thresh, J. M. (1983). The long-range dispersal of plant viruses by arthropod vectors. Philosophical Transactions of the Royal Society, Series B-Biological Sciences, 302:497–528.
  • Trębicki, P., Nancarrow, N., Cole, E., Bosque‐Pérez, N. A., Constable, F. E., Freeman, A. J., Fitzgerald, G. J. (2015). Virus disease in wheat predicted to increase with a changing climate. Global Change Biology, 21(9), 3511-3519.
  • Trębicki, P., Vandegeer, R. K., Bosque-Perez, N .A., Powell, K. S., Dader, B., Freeman, A. J., Yen, A. L., Fitzgerald, G. J., Luck, J. E., (2016). Virus infection mediates the effects of elevated CO2 on plants and vectors. Scientific Reports, 6, 22785.
  • Trębicki, P., Dáder, B., Vassiliadis, S., Fereres, A. (2017a). Insect–plant–pathogen interactionsmas shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Science, 24 (6), 975–989.
  • Trębicki, P., Nancarrow, N., Bosque-Pérez, N. A., Rodoni, B., Aftab, M., Freeman, A., ... and Fitzgerald, G. J. (2017b). Virus incidence in wheat increases under elevated CO2: A 4-year study of yellow dwarf viruses from a free air carbon dioxide facility. Virus research, 241, 137-144.
  • Trębicki, P., Finlay, K. (2019). Pests and diseases under climate change; its threat to foodmsecurity. Food Security Climate Change, 229–250.
  • Trębicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286:1-7.
  • U.N. (2015). World population prospects: the 2015 revision, key findings and advance tables. United Nations Department of Economic and Social Affairs and Population Division, Working Paper No ESA/P/WP. 241.
  • U. N. (2019). World population prospects 2019: Highlights. New York, NY: United Nations Department for Economic and Social Affairs.
  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4):911-21. doi: 10.1111/j.1469-8137.2008.02627.x. Epub 2008 Sep 23. Erratum in: New Phytologist, 2009;184(1):275. PMID: 18823313.
  • You, L., Rosegrant, M. W., Wood, S., Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149(6-7), 1009-1014.
  • Velásquez, A. C., Castroverde, C. D. M., He, S. Y. (2018). Plant–pathogen warfare under changing climate conditions. Current Biology, 28(10), R619-R634.
  • Vassiliadis, S., Plummer, K. M., Powell, K. S., Trębicki, P., Luck, J. E., and Rochfort, S. J. (2016). The effect of elevated CO2 and virus infection on the primary metabolism of wheat. Functional Plant Biology, 43(9), 892-902.
  • Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., & Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326-9331.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Agronomy
Journal Section Derleme Makaleler
Authors

Birol Akbaş 0000-0001-9797-7536

Ali Ferhan Morca 0000-0002-7480-922X

Sevgi Coşkan 0000-0002-3589-6041

Early Pub Date April 28, 2022
Publication Date April 30, 2022
Submission Date July 17, 2021
Acceptance Date November 26, 2021
Published in Issue Year 2022 Issue: 374

Cite

APA Akbaş, B., Morca, A. F., & Coşkan, S. (2022). İklim Değişikliğinin Tahıl Virüs Hastalıkları Üzerine Etkisi. Ziraat Mühendisliği(374), 4-14. https://doi.org/10.33724/zm.972677