Araştırma Makalesi
BibTex RIS Kaynak Göster

Sabit Kanatlı Tarımsal İnsansız Hava Araçları (İHA) için Malzeme ve Kanat Profili Tabanlı Rüzgâr Dinamiği Analizi

Yıl 2024, Sayı: 379, 16 - 24, 27.06.2024
https://doi.org/10.33724/zm.1400491

Öz

Malzeme biliminin yüksek yapısal sağlamlığı ve ağırlığın azaltılması, tarımsal insansız hava araçlarında çok sayıda malzemenin kullanılmasına yol açmıştır. Bu nedenle araştırmada tarımsal İHA dinamik yapı analizi için akışkanlar dinamiği modeli çalışılmıştır. Bu araştırma, yapısal olarak güçlü ve sert malzemeler için yüksek performanslı değerlendirme sonuçlarını karşılaştırmaktadır. Analiz ve tasarım, her iki parametre de benzersiz engeller getirmektedir. Çalışma, kanat tasarlamak için seçilen malzeme çeşitlerine göre tasarım algısını optimize etmektedir. Birçok tarımsal İHA kanat profili aerodinamik olarak verimlidir. Bu nedenle, her bir kanat kesiti için gerilme ve yer değiştirmeye dayalı olarak optimum malzeme formuna odaklanılmaktadır. Bu çalışmada 500 mm uzunluğunda, 200, 250 ve 300 mm genişliğinde polistiren, PVC ve yumuşak ahşap kanat profillerinin kesit tasarım sonuçları incelenmiştir. PVC malzemeden 200 mm genişliğe sahip NACA 4412 kanat profilinin, hava akış yönüne göre X ekseni üzerinde (1.141e + 06 dyne) maksimum statik basınca sahip olduğu bulunmuştur. Ayrıca PVC’den yapılmış 250 mm genişliğe sahip NACA 2410 kanat profili en düşük statik basınca (2.3104e + 05 dyne) sahip olduğu belirlenmiştir.

Kaynakça

  • Basri, E. I., Sultan, M. T. H., Faizal, M., Basri, A. A., Abas, M. F., Majid, M. A., Abdul Majid, M.S., Mandeep, J.S., Ahmad, K. A. (2019). Performance analysis of composite ply orientation in aeronautical application of unmanned aerial vehicle (UAV) NACA4415 wing. Journal of Materials Research and Technology, 8(5): 3822-3834.
  • Çetinsoy, E., Dikyar, S., Hançer, C., Öner, K. T., Sirimoğlu, E., Unel, M., & Akşit, M. F. (2012). Design and construction of a novel quad tilt-wing UAV. Mechatronics, 22(6): 723-745.
  • Devi, P. A. & Avvari, C. (2022). Design of folded wing mechanism for Unmanned Aerial Vehicle (UAV). Materials Today: Proceedings, 62: 4117-4125.
  • Dündar, Ö., Bilici, M., & Ünler, T. (2020). Design and performance analyses of a fixed wing battery VTOL UAV. Engineering Science and Technology, an International Journal, 23(5): 1182-1193.
  • El Adawy, M., Abdelhalim, E. H., Mahmoud, M., Mohamed, I. H., Othman, M. M., ElGamal, G. S., & ElShabasy, Y. H. (2023). Design and fabrication of a fixed-wing Unmanned Aerial Vehicle (UAV). Ain Shams Engineering Journal, 14(9), 102094.
  • Kaya, M.N., Köse, F., Ingham, D., Ma, L., Pourkashanian, M. (2018). Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades, Journal of Wind Engineering and Industrial Aerodynamics, 176(2018): 166–173.
  • Lukowsky, D., & Gohla, A. (2022). Material failure analysis of three in-flight wing fractures of wooden aircraft. Journal of Failure Analysis and Prevention, 22(3): 1075-1084.
  • Luo, K., Cao, J., Wang, C., Cai, S., Yu, R., Wu, M., Yang, B., Xiang, W. (2022). First unmanned aerial vehicle airborne gravimetry based on the CH-4 UAV in China. Journal of Applied Geophysics, 206, 104835.
  • Mehta, F., & Joshi, H. (2016). Finite element method: An overview. IOSR Journal of Dental and Medical Sciences, 15(3): 38-41.

Material and Airfoil-Based Wind Dynamics Analysis for Fixed-Wing Agricultural Unmanned Aerial Vehicles (UAV)

Yıl 2024, Sayı: 379, 16 - 24, 27.06.2024
https://doi.org/10.33724/zm.1400491

Öz

Materials science’s high structural stiffness and weight reduction have led to the usage of numerous materials in agricultural unmanned aerial vehicles. So, in the research, the fluid dynamics model for agricultural UAV dynamic structure analysis is studied. The research compares high-performance evaluation outcomes for structurally strong and stiff materials. In analysis and design, both parameters bring unique obstacles. The study optimized design perception for selected material variations to design a wing. Many agricultural UAV airfoils are aerodynamically efficient. Thus, the focus is on optimal material formation based on stress and displacement for each wing airfoil. This study examined the airfoil design results of 500 mm long, 200, 250, and 300 mm wide polystyrene, PVC, and soft wood material airfoils. It is found that the NACA 4412 airfoil with a 200 mm width in PVC material has the maximum static pressure on the X axis (1.141e + 06 dynes) according to airflow direction. Also, it is determined that the NACA 2410 airfoil with a 250 mm width in PVC has the lowest static pressure (2.3104e + 05 dynes).

Kaynakça

  • Basri, E. I., Sultan, M. T. H., Faizal, M., Basri, A. A., Abas, M. F., Majid, M. A., Abdul Majid, M.S., Mandeep, J.S., Ahmad, K. A. (2019). Performance analysis of composite ply orientation in aeronautical application of unmanned aerial vehicle (UAV) NACA4415 wing. Journal of Materials Research and Technology, 8(5): 3822-3834.
  • Çetinsoy, E., Dikyar, S., Hançer, C., Öner, K. T., Sirimoğlu, E., Unel, M., & Akşit, M. F. (2012). Design and construction of a novel quad tilt-wing UAV. Mechatronics, 22(6): 723-745.
  • Devi, P. A. & Avvari, C. (2022). Design of folded wing mechanism for Unmanned Aerial Vehicle (UAV). Materials Today: Proceedings, 62: 4117-4125.
  • Dündar, Ö., Bilici, M., & Ünler, T. (2020). Design and performance analyses of a fixed wing battery VTOL UAV. Engineering Science and Technology, an International Journal, 23(5): 1182-1193.
  • El Adawy, M., Abdelhalim, E. H., Mahmoud, M., Mohamed, I. H., Othman, M. M., ElGamal, G. S., & ElShabasy, Y. H. (2023). Design and fabrication of a fixed-wing Unmanned Aerial Vehicle (UAV). Ain Shams Engineering Journal, 14(9), 102094.
  • Kaya, M.N., Köse, F., Ingham, D., Ma, L., Pourkashanian, M. (2018). Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades, Journal of Wind Engineering and Industrial Aerodynamics, 176(2018): 166–173.
  • Lukowsky, D., & Gohla, A. (2022). Material failure analysis of three in-flight wing fractures of wooden aircraft. Journal of Failure Analysis and Prevention, 22(3): 1075-1084.
  • Luo, K., Cao, J., Wang, C., Cai, S., Yu, R., Wu, M., Yang, B., Xiang, W. (2022). First unmanned aerial vehicle airborne gravimetry based on the CH-4 UAV in China. Journal of Applied Geophysics, 206, 104835.
  • Mehta, F., & Joshi, H. (2016). Finite element method: An overview. IOSR Journal of Dental and Medical Sciences, 15(3): 38-41.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Research Article
Yazarlar

Abdullah Beyaz 0000-0002-7329-1318

Erken Görünüm Tarihi 25 Haziran 2024
Yayımlanma Tarihi 27 Haziran 2024
Gönderilme Tarihi 5 Aralık 2023
Kabul Tarihi 24 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 379

Kaynak Göster

APA Beyaz, A. (2024). Material and Airfoil-Based Wind Dynamics Analysis for Fixed-Wing Agricultural Unmanned Aerial Vehicles (UAV). Ziraat Mühendisliği(379), 16-24. https://doi.org/10.33724/zm.1400491