The estimation of unknown parameters of two-parameter bathtub-shaped lifetime distribution based on Type-II progressive censoring with binomial removals is studied. Maximum likelihood estimators are evaluated and using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov Chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. The expected time required to complete the life test under this censoring scheme is investigated. Monte Carlo simulations are performed to compare the performances of the different methods,
and one data set is analyzed for illustrative purposes.
Journal Section | Statistics |
---|---|
Authors | |
Publication Date | December 19, 2016 |
Published in Issue | Year 2016 Volume: 29 Issue: 4 |