Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 46 Sayı: 1, 113 - 120, 01.03.2018

Öz

Kaynakça

  • R.M. Nerem, A. Sambanis, Tissue engineering: from biology to biological substitutes, Tissue Eng., 1 (1995) 3-13.
  • S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng., 7 (2001) 679-689.
  • L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable polymer scaffolds for tissue engineering, Biotechnol., 12 (1994) 689-693.
  • B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 17 Suppl. 4 (2008) 467-479.
  • S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 23 (2002) 4095-4103.
  • V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • M. Andac, I.Y. Galaev, H. Yavuz, A. Denizli, Molecularly imprinted cryogels for human serum albumin depletion in: Affinity Chromatography: Methods and Protocols, S. Reichtelt, ed., Methods in Molecular Biology Series, volume 1286, pp 233-237, Humana Press, 2015.
  • D. Cimen, F. Yilmaz, I. Percin, D. Turkmen, A. Denizli, Dye affinity cryogels for plasmid DNA purification, Mater. Sci. Eng. Mater. Biol. Appl., 56 (2015) 318-324.
  • A. Kumar, A. Bhardwaj, Methods in cell separation for biomedical application: cryogels as a new tool, Biomed. Mater., 3 (2008) 1-12.
  • M. Uygun, A.A. Karagozler, A. Denizli, Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte, Artif. Cells Nanomed. Biotechnol., 42 (2014) 128-137.
  • N. Bolgen, I. Vargel, P. Korkusuz, E. Guzel, F. Plieva, I. Galaev, B. Matiasson, E. Piskin, Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model, J. Biomed. Mater. Res. A, 91 (2009) 60-68.
  • C.H. Chen, C.Y. Kuo, Y.J. Wang, J.P. Chen, Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering, Int. J. Mol. Sci., 17 (2016) 1-22.
  • M.V. Konovalova, P.A. Markov, E.A. Durnev, D.V. Kurek, S.V. Popov, V.P. Varlamov, Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application, J. Biomed. Mater. Res. A, 105 (2017) 547-556.
  • S. Odabas, G.A. Feichtinger, P. Korkusuz, I. Inci, E. Bilgic, A.S. Yar, T. Cavusoglu, S. Menevse, I. Vargel, E. Piskin, Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes, J. Tissue Eng. Regen. Med., 7 (2013) 831-840.
  • A. Sharma, S. Bhat, T. Vishnoi, V. Nayak, A. Kumar, Three-dimensional supermacroporous carrageenangelatin cryogel matrix for tissue engineering applications, Bio. Med. Res. Int., X (2013) 1-15.
  • L. Cen, W. Liu, L. Cui, W. Zhang, Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications, Pediatric Res., 63 (2008) 492-496.
  • P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, S. Bernstorff, Fibrillar structure and mechanical properties of collagen, J. Struc. Biol., 122 (1998) 119- 122.
  • L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials, 24 (2003) 4833-4841
  • M. Rafat, F. Li, P. Fagerholm, N.S. Lagali, M.A. Watsky, R. Munger, T. Matsuura, M. Griffith, PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering, Biomaterials, 29 (2008) 3960-3972.
  • S. Mavila, O. Eivgi, I. Berkovich, N.G. Lemcoff, Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles, Chem. Rev., 116 (2016) 878-961.
  • R. Kluger, A. Alagic, Chemical cross-linking and protein-protein interactions-a review with illustrative protocols, Bioorganic Chem., 32 (2004) 451-472.
  • R.A.C. João Maia, Jorge F.J. Coelho, Pedro N.Simões, M. Helena Gil, Insight on the periodate oxidation of dextran and its structural vicissitudes, Polymer, 52 (2011) 258-265.
  • Y.D. Czaja WK, Kawecki M, Brown RM Jr., The future prospects of microbial cellulose in biomedical applications, Biomacromol., 8 (2007) 1-12.
  • N.A. Hoenich, Cellulose for medical applications: past, present, and future, BioResources, 1 (2006) 1-11.
  • B. León-Mancilla, M. Araiza-Téllez, J. Flores-Flores, M. Piña-Barba, Physico-chemical characterization of collagen scaffolds for tissue engineering, J. Appl. Res. Tech., 14 (2016) 77-85.
  • P.R.F.D.S. Moraes, S. Saska, H. Barud, L.R.D. Lima, V.D.C.A. Martins, A.M.D.G. Plepis, S.J.L. Ribeiro, A.M.M. Gaspar, Bacterial cellulose/collagen hydrogel for wound healing, Mater. Res., 19 (2016) 106-116.
  • T. Nagai, N. Suzuki, Y. Tanoue, N. Kai, Collagen from tendon of Yezo Sika deer (Cervus nippon yesoensis) as By-Product, Food Nutr. Sci., 3 (2012) 72-79.
  • J. Autian, Biological model systems for the testing of the toxicity of biomaterials, Polymers in Medicine and Surgery, Springer, Boston, MA, 1975.

Functional Polysaccharides Blended Collagen Cryogels

Yıl 2018, Cilt: 46 Sayı: 1, 113 - 120, 01.03.2018

Öz

Researches investigate new types of scaffolds for tissue engineering and regenerative medicine applications
to support cell proliferation and growth as well as tissue repair and regeneration. Although, there are
several types of polymeric materials and various kinds of preparation techniques are already used today;
there is still no consensus on the answer of the question “what is the best scaffold for tissue repair and
regeneration?”. Cryogels, which is a kind of hydrogels and, cryogelation, which is the technique for cryogel
preparation, are rather new for tissue engineering applications. Here in this study, dextran and carboxymethyl
cellulose functional polysaccharides blended collagen cryogels were prepared and characterized by chemical,
structural and biological evaluations. Results show that, these collagen cryogels with their polysaccharides
functional components have proper chemical and thermal characteristics and show good bio and hemocompatibility.
Therefore, these cryogels can be used as a candidate scaffold for tissue engineering and
regenerative medicine applications.

Kaynakça

  • R.M. Nerem, A. Sambanis, Tissue engineering: from biology to biological substitutes, Tissue Eng., 1 (1995) 3-13.
  • S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng., 7 (2001) 679-689.
  • L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable polymer scaffolds for tissue engineering, Biotechnol., 12 (1994) 689-693.
  • B.P. Chan, K.W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 17 Suppl. 4 (2008) 467-479.
  • S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials, 23 (2002) 4095-4103.
  • V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 (2003) 445-451.
  • M. Andac, I.Y. Galaev, H. Yavuz, A. Denizli, Molecularly imprinted cryogels for human serum albumin depletion in: Affinity Chromatography: Methods and Protocols, S. Reichtelt, ed., Methods in Molecular Biology Series, volume 1286, pp 233-237, Humana Press, 2015.
  • D. Cimen, F. Yilmaz, I. Percin, D. Turkmen, A. Denizli, Dye affinity cryogels for plasmid DNA purification, Mater. Sci. Eng. Mater. Biol. Appl., 56 (2015) 318-324.
  • A. Kumar, A. Bhardwaj, Methods in cell separation for biomedical application: cryogels as a new tool, Biomed. Mater., 3 (2008) 1-12.
  • M. Uygun, A.A. Karagozler, A. Denizli, Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte, Artif. Cells Nanomed. Biotechnol., 42 (2014) 128-137.
  • N. Bolgen, I. Vargel, P. Korkusuz, E. Guzel, F. Plieva, I. Galaev, B. Matiasson, E. Piskin, Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model, J. Biomed. Mater. Res. A, 91 (2009) 60-68.
  • C.H. Chen, C.Y. Kuo, Y.J. Wang, J.P. Chen, Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering, Int. J. Mol. Sci., 17 (2016) 1-22.
  • M.V. Konovalova, P.A. Markov, E.A. Durnev, D.V. Kurek, S.V. Popov, V.P. Varlamov, Preparation and biocompatibility evaluation of pectin and chitosan cryogels for biomedical application, J. Biomed. Mater. Res. A, 105 (2017) 547-556.
  • S. Odabas, G.A. Feichtinger, P. Korkusuz, I. Inci, E. Bilgic, A.S. Yar, T. Cavusoglu, S. Menevse, I. Vargel, E. Piskin, Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes, J. Tissue Eng. Regen. Med., 7 (2013) 831-840.
  • A. Sharma, S. Bhat, T. Vishnoi, V. Nayak, A. Kumar, Three-dimensional supermacroporous carrageenangelatin cryogel matrix for tissue engineering applications, Bio. Med. Res. Int., X (2013) 1-15.
  • L. Cen, W. Liu, L. Cui, W. Zhang, Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications, Pediatric Res., 63 (2008) 492-496.
  • P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, S. Bernstorff, Fibrillar structure and mechanical properties of collagen, J. Struc. Biol., 122 (1998) 119- 122.
  • L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, X. Hu, C. Han, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials, 24 (2003) 4833-4841
  • M. Rafat, F. Li, P. Fagerholm, N.S. Lagali, M.A. Watsky, R. Munger, T. Matsuura, M. Griffith, PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering, Biomaterials, 29 (2008) 3960-3972.
  • S. Mavila, O. Eivgi, I. Berkovich, N.G. Lemcoff, Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles, Chem. Rev., 116 (2016) 878-961.
  • R. Kluger, A. Alagic, Chemical cross-linking and protein-protein interactions-a review with illustrative protocols, Bioorganic Chem., 32 (2004) 451-472.
  • R.A.C. João Maia, Jorge F.J. Coelho, Pedro N.Simões, M. Helena Gil, Insight on the periodate oxidation of dextran and its structural vicissitudes, Polymer, 52 (2011) 258-265.
  • Y.D. Czaja WK, Kawecki M, Brown RM Jr., The future prospects of microbial cellulose in biomedical applications, Biomacromol., 8 (2007) 1-12.
  • N.A. Hoenich, Cellulose for medical applications: past, present, and future, BioResources, 1 (2006) 1-11.
  • B. León-Mancilla, M. Araiza-Téllez, J. Flores-Flores, M. Piña-Barba, Physico-chemical characterization of collagen scaffolds for tissue engineering, J. Appl. Res. Tech., 14 (2016) 77-85.
  • P.R.F.D.S. Moraes, S. Saska, H. Barud, L.R.D. Lima, V.D.C.A. Martins, A.M.D.G. Plepis, S.J.L. Ribeiro, A.M.M. Gaspar, Bacterial cellulose/collagen hydrogel for wound healing, Mater. Res., 19 (2016) 106-116.
  • T. Nagai, N. Suzuki, Y. Tanoue, N. Kai, Collagen from tendon of Yezo Sika deer (Cervus nippon yesoensis) as By-Product, Food Nutr. Sci., 3 (2012) 72-79.
  • J. Autian, Biological model systems for the testing of the toxicity of biomaterials, Polymers in Medicine and Surgery, Springer, Boston, MA, 1975.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Sedat Odabaş

Yayımlanma Tarihi 1 Mart 2018
Kabul Tarihi 2 Şubat 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 46 Sayı: 1

Kaynak Göster

APA Odabaş, S. (2018). Functional Polysaccharides Blended Collagen Cryogels. Hacettepe Journal of Biology and Chemistry, 46(1), 113-120.
AMA Odabaş S. Functional Polysaccharides Blended Collagen Cryogels. HJBC. Mart 2018;46(1):113-120.
Chicago Odabaş, Sedat. “Functional Polysaccharides Blended Collagen Cryogels”. Hacettepe Journal of Biology and Chemistry 46, sy. 1 (Mart 2018): 113-20.
EndNote Odabaş S (01 Mart 2018) Functional Polysaccharides Blended Collagen Cryogels. Hacettepe Journal of Biology and Chemistry 46 1 113–120.
IEEE S. Odabaş, “Functional Polysaccharides Blended Collagen Cryogels”, HJBC, c. 46, sy. 1, ss. 113–120, 2018.
ISNAD Odabaş, Sedat. “Functional Polysaccharides Blended Collagen Cryogels”. Hacettepe Journal of Biology and Chemistry 46/1 (Mart 2018), 113-120.
JAMA Odabaş S. Functional Polysaccharides Blended Collagen Cryogels. HJBC. 2018;46:113–120.
MLA Odabaş, Sedat. “Functional Polysaccharides Blended Collagen Cryogels”. Hacettepe Journal of Biology and Chemistry, c. 46, sy. 1, 2018, ss. 113-20.
Vancouver Odabaş S. Functional Polysaccharides Blended Collagen Cryogels. HJBC. 2018;46(1):113-20.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc