Year 2019, Volume 3, Issue 1, Pages 32 - 43 2019-04-30

SAKARYA WATER CYCLE PROJECT: 3D MODELING, 3D PRINTING, ENERGY COSTS AND RECOVERY
SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM

Hakan MADEN [1] , Kerim ÇETİNKAYA [2]

24 83

Most of the fresh waters on the world are connected to the seas. Therefore, it cannot be used for irrigation of drinking water or agricultural land. Re-use of freshwater in Turkey were made for the purpose of a project. This project is aimed at the re-use of the Sakarya River, which is poured into the Black Sea. For this purpose, physical geography map of Sakarya river and Sakarya region was examined. Later on, the three dimensional design of the Sakarya region was carried out close to the physical structure. The route for transporting fresh water from the edge of the Black Sea has been determined. For the transportation of fresh water, water channels, water pump properties and necessary electricity need (solar power and electricity generation from pipe turbines) were calculated. It is aimed to produce 3D prototypes of Sakarya's physical map and freshwater route.

Dünya üzerinde tatlı suların çoğu denizlere bağlanmaktadır. Bu nedenle içme suyu veya tarım arazilerinin sulanmasında kullanılamamaktadır. Türkiye’de tatlı suların tekrar kullanılması amacıyla bir proje yapılmıştır. Bu proje Karadeniz’e dökülen Sakarya nehrinin tekrar kullanılması hedeflenmiştir. Bu amaçla Sakarya nehri ve Sakarya bölgesinin fiziki coğrafya haritası incelendi. Daha sonra Sakarya bölgesinin fiziki yapısına yakın boyutlarda üç boyutlu tasarımı yapılmıştır. Tatlı suyun Karadeniz kenarından taşınması için güzergâh belirlenmiştir. Tatlı suyun taşınması için su kanalları, su pompa özellikleri ve gerekli elektrik ihtiyacının (güneş enerjisi ve boru içi türbinlerden elektrik üretimi) hesaplamaları yapılmıştır. Tasarımı yapılan Sakarya’nın fizik haritası ve tatlı su güzergahının 3D prototip üretimi yapılmıştır. 

  • 1. Learn the issues: water. United States Environmental Protection Agency (EPA), ABD, 2012.
  • 2. Brothers K. A practical approach to water loss reduction. Water, 2003;21:54-55.
  • 3. EU, Report on the Reviewof the EuropeanWater Scarcity and Droughts Policy, Communication from the Commission to the European Parliament and the Council, The Eur. Econ. And Soc. Comm. and the Comm. of the Reg., DG Environ., Brussels, 2012.
  • 4. Custodio, E., Andreu-Rodes, J.M., Aragon, R., Estrela, T., Ferrer, J. and Garcia-Arostegui, J.L. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016; 559:302–316. http://dx.doi.org/10.1016/j.scitotenv.2016.02.107.
  • 5. Martínez-Álvarez, V., Martin-Gorriz, B. and Soto-García, M. Seawater desalination for crop irrigation a review of current experiences and revealed key issues. Desalination. 2016; 381: 58–70. http://dx.doi.org/10.1016/j.desal.2015.11.032.
  • 6. Feitelson, E. and Rosenthal, G. Desalination, space and power: the ramifications of Israel's changing water geography. Geoforum. 2012; 43: 272-284. http://dx.doi.org/10.1016/j.geoforum.2011.08.011.
  • 7. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J. and Mayes, A.M. Science and technology for water purification in the coming decades. Nature;452:301–310. https://doi.org/10.1038/nature06599
  • 8. Garcia, C., Molina, F. and Zarzo, D. 7-year operation of a BWRO plant with rawwater from a coastal aquifer for agricultural irrigation. Desalin and Water Treat. 2011; 31: 331–338. http://dx.doi.org/10.5004/DWT.2011.23.
  • 9. Barron, O., Ali, R., Hodgson, G., Smith, D., Qureshi, E., McFarlane, D., Campos, E. and Zarzo, D. Feasibility assessment of desalination application in Australian traditional agriculture. Desalination. 2015; 364: 33–45. http://dx.doi.org/10.1016/j.desal.2014.07.024.
  • 10. Jiménez-Martínez, .L., García-Aróstegui, J.L., Hunink, S., Contreras, P., Baudron, L. and Candela, L. The role of groundwater in highly human-modified hydrosystems: a review of impacts and mitigationoptions in the Campo de Cartagena-Mar Menor coastal plain (SE Spain). Environ. Rev. 2016; 24(4): 377–392. http://dx.doi.org/10.1139/er-2015-0089.
  • 11. Aparicio, J., Alfranca, O., Jimenez-Martinez, J., Garcia-Arostegui, J.L., Candela, L. and Lopez, J.L. Groundwater salinity process, mitigation measures and economic assessment: an example from an intensive agricultural area. 42nd IAH Congress, 2015:290-299.
  • 12. IWMI - International Water Management Institute. Comprehensive Assessment of Water Management in Agriculture, Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute, 2007.
  • 13. Joy, K. J., Gujja, B., Paranjape S., Goud V. Anda Vispute S. Water conflicts in India: a million revolts in the making, Routledge, New Delhi, 2007.
  • 14. Toklu, E., GüneyM.S., Işık, M., Çomaklı, K and Kaygusuz, K. Energy production, consumption, policies and recent developments in Turkey, Renewable and Sustainable Energy Reviews, 2010;(14):1172-1186.
  • 15. Yılmaz M. The energy potential of Turkey and its importance of renewable energy sources in terms of electricity production models, Ankara University Journal of Environmental Sciences, 2012;4(2):33-54.
  • 16. YEGM, Türkiye’nin Hidroelektriklik Potansiyeli. http://www.eie.gov.tr/yenilenebilir/h_turkiye_potansiyel.aspx, 2013. Accessed March 26, 2019.
  • 17. Balat, M. Present situation and potential role of renewable energy in Turkey, Renewable Energy,2010;46: 1-13.
  • 18. Deponpump, Diesel Engine or Electric Motor Multistage Water Pump. https://www.deponpump.com/water-pump/multistage-water-pump/diesel-engine-or-electric-motor-multistage.html. Accessed March 26, 2019.
  • 19. Türkiye Haritası, Türkiye fiziki haritası 2. http://www.turkiyeharitasi.gen.tr/fiziki-harita/. Accessed March 26, 2019.
  • 20. Vergo, Elin Enerji. http://www.vergo.com.tr/ konya ME-SE 12MW. Accessed March 26, 2019.
  • 21. The Chic Ecolist, Renewable energy from Drinking Water Pipes. https://www.thechicecologist.com/green-design/lucidpipe-renewable-hydropower/. Accessed March 26, 2019.
  • 22. Lucid Energy, Power output & water flow requirements. http://lucidenergy.com/how-it-works/. Accessed March 26, 2019.
Primary Language tr
Subjects Engineering
Journal Section Research Article
Authors

Orcid: 0000-0002-0912-7310
Author: Hakan MADEN
Institution: İhlas Ev Aletleri İml. San. Tic. A.Ş.
Country: Turkey


Author: Kerim ÇETİNKAYA
Institution: KARABÜK ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date: April 30, 2019

Bibtex @research article { ij3dptdi546557, journal = {International Journal of 3D Printing Technologies and Digital Industry}, issn = {2602-3350}, address = {Kerim ÇETİNKAYA}, year = {2019}, volume = {3}, pages = {32 - 43}, doi = {}, title = {SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM}, key = {cite}, author = {MADEN, Hakan and ÇETİNKAYA, Kerim} }
APA MADEN, H , ÇETİNKAYA, K . (2019). SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. International Journal of 3D Printing Technologies and Digital Industry, 3 (1), 32-43. Retrieved from http://dergipark.org.tr/ij3dptdi/issue/44951/546557
MLA MADEN, H , ÇETİNKAYA, K . "SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM". International Journal of 3D Printing Technologies and Digital Industry 3 (2019): 32-43 <http://dergipark.org.tr/ij3dptdi/issue/44951/546557>
Chicago MADEN, H , ÇETİNKAYA, K . "SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM". International Journal of 3D Printing Technologies and Digital Industry 3 (2019): 32-43
RIS TY - JOUR T1 - SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM AU - Hakan MADEN , Kerim ÇETİNKAYA Y1 - 2019 PY - 2019 N1 - DO - T2 - International Journal of 3D Printing Technologies and Digital Industry JF - Journal JO - JOR SP - 32 EP - 43 VL - 3 IS - 1 SN - 2602-3350- M3 - UR - Y2 - 2019 ER -
EndNote %0 International Journal of 3D Printing Technologies and Digital Industry SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM %A Hakan MADEN , Kerim ÇETİNKAYA %T SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM %D 2019 %J International Journal of 3D Printing Technologies and Digital Industry %P 2602-3350- %V 3 %N 1 %R %U
ISNAD MADEN, Hakan , ÇETİNKAYA, Kerim . "SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM". International Journal of 3D Printing Technologies and Digital Industry 3 / 1 (April 2019): 32-43.
AMA MADEN H , ÇETİNKAYA K . SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. IJ3DPTDI. 2019; 3(1): 32-43.
Vancouver MADEN H , ÇETİNKAYA K . SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. International Journal of 3D Printing Technologies and Digital Industry. 2019; 3(1): 43-32.