Araştırma Makalesi
BibTex RIS Kaynak Göster

SAKARYA WATER CYCLE PROJECT: 3D MODELING, 3D PRINTING, ENERGY COSTS AND RECOVERY

Yıl 2019, Cilt: 3 Sayı: 1, 32 - 43, 30.04.2019

Öz

Most of the fresh waters on the world are connected to
the seas. Therefore, it cannot be used for irrigation of drinking water or
agricultural land. Re-use of freshwater in Turkey were made for the purpose of
a project. This project is aimed at the re-use of the Sakarya River, which is
poured into the Black Sea. For this purpose, physical geography map of Sakarya
river and Sakarya region was examined. Later on, the three dimensional design
of the Sakarya region was carried out close to the physical structure. The
route for transporting fresh water from the edge of the Black Sea has been
determined. For the transportation of fresh water, water channels, water pump
properties and necessary electricity need (solar power and electricity
generation from pipe turbines) were calculated. It is aimed to produce 3D
prototypes of Sakarya's physical map and freshwater route.

Kaynakça

  • 1. Learn the issues: water. United States Environmental Protection Agency (EPA), ABD, 2012.
  • 2. Brothers K. A practical approach to water loss reduction. Water, 2003;21:54-55.
  • 3. EU, Report on the Reviewof the EuropeanWater Scarcity and Droughts Policy, Communication from the Commission to the European Parliament and the Council, The Eur. Econ. And Soc. Comm. and the Comm. of the Reg., DG Environ., Brussels, 2012.
  • 4. Custodio, E., Andreu-Rodes, J.M., Aragon, R., Estrela, T., Ferrer, J. and Garcia-Arostegui, J.L. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016; 559:302–316. http://dx.doi.org/10.1016/j.scitotenv.2016.02.107.
  • 5. Martínez-Álvarez, V., Martin-Gorriz, B. and Soto-García, M. Seawater desalination for crop irrigation a review of current experiences and revealed key issues. Desalination. 2016; 381: 58–70. http://dx.doi.org/10.1016/j.desal.2015.11.032.
  • 6. Feitelson, E. and Rosenthal, G. Desalination, space and power: the ramifications of Israel's changing water geography. Geoforum. 2012; 43: 272-284. http://dx.doi.org/10.1016/j.geoforum.2011.08.011.
  • 7. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J. and Mayes, A.M. Science and technology for water purification in the coming decades. Nature;452:301–310. https://doi.org/10.1038/nature06599
  • 8. Garcia, C., Molina, F. and Zarzo, D. 7-year operation of a BWRO plant with rawwater from a coastal aquifer for agricultural irrigation. Desalin and Water Treat. 2011; 31: 331–338. http://dx.doi.org/10.5004/DWT.2011.23.
  • 9. Barron, O., Ali, R., Hodgson, G., Smith, D., Qureshi, E., McFarlane, D., Campos, E. and Zarzo, D. Feasibility assessment of desalination application in Australian traditional agriculture. Desalination. 2015; 364: 33–45. http://dx.doi.org/10.1016/j.desal.2014.07.024.
  • 10. Jiménez-Martínez, .L., García-Aróstegui, J.L., Hunink, S., Contreras, P., Baudron, L. and Candela, L. The role of groundwater in highly human-modified hydrosystems: a review of impacts and mitigationoptions in the Campo de Cartagena-Mar Menor coastal plain (SE Spain). Environ. Rev. 2016; 24(4): 377–392. http://dx.doi.org/10.1139/er-2015-0089.
  • 11. Aparicio, J., Alfranca, O., Jimenez-Martinez, J., Garcia-Arostegui, J.L., Candela, L. and Lopez, J.L. Groundwater salinity process, mitigation measures and economic assessment: an example from an intensive agricultural area. 42nd IAH Congress, 2015:290-299.
  • 12. IWMI - International Water Management Institute. Comprehensive Assessment of Water Management in Agriculture, Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute, 2007.
  • 13. Joy, K. J., Gujja, B., Paranjape S., Goud V. Anda Vispute S. Water conflicts in India: a million revolts in the making, Routledge, New Delhi, 2007.
  • 14. Toklu, E., GüneyM.S., Işık, M., Çomaklı, K and Kaygusuz, K. Energy production, consumption, policies and recent developments in Turkey, Renewable and Sustainable Energy Reviews, 2010;(14):1172-1186.
  • 15. Yılmaz M. The energy potential of Turkey and its importance of renewable energy sources in terms of electricity production models, Ankara University Journal of Environmental Sciences, 2012;4(2):33-54.
  • 16. YEGM, Türkiye’nin Hidroelektriklik Potansiyeli. http://www.eie.gov.tr/yenilenebilir/h_turkiye_potansiyel.aspx, 2013. Accessed March 26, 2019.
  • 17. Balat, M. Present situation and potential role of renewable energy in Turkey, Renewable Energy,2010;46: 1-13.
  • 18. Deponpump, Diesel Engine or Electric Motor Multistage Water Pump. https://www.deponpump.com/water-pump/multistage-water-pump/diesel-engine-or-electric-motor-multistage.html. Accessed March 26, 2019.
  • 19. Türkiye Haritası, Türkiye fiziki haritası 2. http://www.turkiyeharitasi.gen.tr/fiziki-harita/. Accessed March 26, 2019.
  • 20. Vergo, Elin Enerji. http://www.vergo.com.tr/ konya ME-SE 12MW. Accessed March 26, 2019.
  • 21. The Chic Ecolist, Renewable energy from Drinking Water Pipes. https://www.thechicecologist.com/green-design/lucidpipe-renewable-hydropower/. Accessed March 26, 2019.
  • 22. Lucid Energy, Power output & water flow requirements. http://lucidenergy.com/how-it-works/. Accessed March 26, 2019.

SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM

Yıl 2019, Cilt: 3 Sayı: 1, 32 - 43, 30.04.2019

Öz

Dünya üzerinde tatlı suların çoğu denizlere
bağlanmaktadır. Bu nedenle içme suyu veya tarım arazilerinin sulanmasında
kullanılamamaktadır. Türkiye’de tatlı suların tekrar kullanılması amacıyla bir
proje yapılmıştır. Bu proje Karadeniz’e dökülen Sakarya nehrinin tekrar
kullanılması hedeflenmiştir. Bu amaçla Sakarya nehri ve Sakarya bölgesinin
fiziki coğrafya haritası incelendi. Daha sonra Sakarya bölgesinin fiziki
yapısına yakın boyutlarda üç boyutlu tasarımı yapılmıştır. Tatlı suyun
Karadeniz kenarından taşınması için güzergâh belirlenmiştir. Tatlı suyun
taşınması için su kanalları, su pompa özellikleri ve gerekli elektrik
ihtiyacının (güneş enerjisi ve boru içi türbinlerden elektrik üretimi)
hesaplamaları yapılmıştır. Tasarımı yapılan Sakarya’nın fizik haritası ve tatlı
su güzergahının 3D prototip üretimi yapılmıştır. 

Kaynakça

  • 1. Learn the issues: water. United States Environmental Protection Agency (EPA), ABD, 2012.
  • 2. Brothers K. A practical approach to water loss reduction. Water, 2003;21:54-55.
  • 3. EU, Report on the Reviewof the EuropeanWater Scarcity and Droughts Policy, Communication from the Commission to the European Parliament and the Council, The Eur. Econ. And Soc. Comm. and the Comm. of the Reg., DG Environ., Brussels, 2012.
  • 4. Custodio, E., Andreu-Rodes, J.M., Aragon, R., Estrela, T., Ferrer, J. and Garcia-Arostegui, J.L. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016; 559:302–316. http://dx.doi.org/10.1016/j.scitotenv.2016.02.107.
  • 5. Martínez-Álvarez, V., Martin-Gorriz, B. and Soto-García, M. Seawater desalination for crop irrigation a review of current experiences and revealed key issues. Desalination. 2016; 381: 58–70. http://dx.doi.org/10.1016/j.desal.2015.11.032.
  • 6. Feitelson, E. and Rosenthal, G. Desalination, space and power: the ramifications of Israel's changing water geography. Geoforum. 2012; 43: 272-284. http://dx.doi.org/10.1016/j.geoforum.2011.08.011.
  • 7. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J. and Mayes, A.M. Science and technology for water purification in the coming decades. Nature;452:301–310. https://doi.org/10.1038/nature06599
  • 8. Garcia, C., Molina, F. and Zarzo, D. 7-year operation of a BWRO plant with rawwater from a coastal aquifer for agricultural irrigation. Desalin and Water Treat. 2011; 31: 331–338. http://dx.doi.org/10.5004/DWT.2011.23.
  • 9. Barron, O., Ali, R., Hodgson, G., Smith, D., Qureshi, E., McFarlane, D., Campos, E. and Zarzo, D. Feasibility assessment of desalination application in Australian traditional agriculture. Desalination. 2015; 364: 33–45. http://dx.doi.org/10.1016/j.desal.2014.07.024.
  • 10. Jiménez-Martínez, .L., García-Aróstegui, J.L., Hunink, S., Contreras, P., Baudron, L. and Candela, L. The role of groundwater in highly human-modified hydrosystems: a review of impacts and mitigationoptions in the Campo de Cartagena-Mar Menor coastal plain (SE Spain). Environ. Rev. 2016; 24(4): 377–392. http://dx.doi.org/10.1139/er-2015-0089.
  • 11. Aparicio, J., Alfranca, O., Jimenez-Martinez, J., Garcia-Arostegui, J.L., Candela, L. and Lopez, J.L. Groundwater salinity process, mitigation measures and economic assessment: an example from an intensive agricultural area. 42nd IAH Congress, 2015:290-299.
  • 12. IWMI - International Water Management Institute. Comprehensive Assessment of Water Management in Agriculture, Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. London: Earthscan, and Colombo: International Water Management Institute, 2007.
  • 13. Joy, K. J., Gujja, B., Paranjape S., Goud V. Anda Vispute S. Water conflicts in India: a million revolts in the making, Routledge, New Delhi, 2007.
  • 14. Toklu, E., GüneyM.S., Işık, M., Çomaklı, K and Kaygusuz, K. Energy production, consumption, policies and recent developments in Turkey, Renewable and Sustainable Energy Reviews, 2010;(14):1172-1186.
  • 15. Yılmaz M. The energy potential of Turkey and its importance of renewable energy sources in terms of electricity production models, Ankara University Journal of Environmental Sciences, 2012;4(2):33-54.
  • 16. YEGM, Türkiye’nin Hidroelektriklik Potansiyeli. http://www.eie.gov.tr/yenilenebilir/h_turkiye_potansiyel.aspx, 2013. Accessed March 26, 2019.
  • 17. Balat, M. Present situation and potential role of renewable energy in Turkey, Renewable Energy,2010;46: 1-13.
  • 18. Deponpump, Diesel Engine or Electric Motor Multistage Water Pump. https://www.deponpump.com/water-pump/multistage-water-pump/diesel-engine-or-electric-motor-multistage.html. Accessed March 26, 2019.
  • 19. Türkiye Haritası, Türkiye fiziki haritası 2. http://www.turkiyeharitasi.gen.tr/fiziki-harita/. Accessed March 26, 2019.
  • 20. Vergo, Elin Enerji. http://www.vergo.com.tr/ konya ME-SE 12MW. Accessed March 26, 2019.
  • 21. The Chic Ecolist, Renewable energy from Drinking Water Pipes. https://www.thechicecologist.com/green-design/lucidpipe-renewable-hydropower/. Accessed March 26, 2019.
  • 22. Lucid Energy, Power output & water flow requirements. http://lucidenergy.com/how-it-works/. Accessed March 26, 2019.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hakan Maden 0000-0002-0912-7310

Kerim Çetinkaya

Yayımlanma Tarihi 30 Nisan 2019
Gönderilme Tarihi 29 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 1

Kaynak Göster

APA Maden, H., & Çetinkaya, K. (2019). SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. International Journal of 3D Printing Technologies and Digital Industry, 3(1), 32-43.
AMA Maden H, Çetinkaya K. SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. IJ3DPTDI. Nisan 2019;3(1):32-43.
Chicago Maden, Hakan, ve Kerim Çetinkaya. “SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM”. International Journal of 3D Printing Technologies and Digital Industry 3, sy. 1 (Nisan 2019): 32-43.
EndNote Maden H, Çetinkaya K (01 Nisan 2019) SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. International Journal of 3D Printing Technologies and Digital Industry 3 1 32–43.
IEEE H. Maden ve K. Çetinkaya, “SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM”, IJ3DPTDI, c. 3, sy. 1, ss. 32–43, 2019.
ISNAD Maden, Hakan - Çetinkaya, Kerim. “SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM”. International Journal of 3D Printing Technologies and Digital Industry 3/1 (Nisan 2019), 32-43.
JAMA Maden H, Çetinkaya K. SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. IJ3DPTDI. 2019;3:32–43.
MLA Maden, Hakan ve Kerim Çetinkaya. “SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM”. International Journal of 3D Printing Technologies and Digital Industry, c. 3, sy. 1, 2019, ss. 32-43.
Vancouver Maden H, Çetinkaya K. SAKARYA SU DÖNGÜ PROJESİ: 3D MODELLEME, 3D YAZDIRMA, ENERJİ GİDERLERİ VE GERİ KAZANIM. IJ3DPTDI. 2019;3(1):32-43.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.