Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 2, 50 - 58, 30.06.2019

Abstract

References

  • K. Y. Benyounis and A. G. Olabi, “Optimization of Different Welding Process Using Statistical and Numerical Approaches: A Reference Guide”, Advanced Engineering Software, Vol. 39, pp. 483-496, 2008.
  • K. Weman, Welding processes handbook. New York: CRC Press LLC. ISBN 0849317738, 2003.
  • A. E. Ikpe, I. Owunna and I. Ememobong, “Effects of Arc Voltage and Welding Current on the Arc Length of Tungsten Inert Gas Welding (TIG)” International Journal of Engineering Technologies-IJET, Vol. 3, Issue 4, pp. 213-221, 2017.
  • R. K. Jain, Production Technology, Khanna Publishers, New Delhi pp. 344-346, 2001.
  • N. Sura, and V. Mittal, “Experimental Study on Effects of Process Parameters on HAZ of Plain Carbon Steel Using GMAW”, International Journal of Latest Research in Science and Technology, Vol. 4, Issue 2, pp. 167-170, 2015.
  • A. G. Kamble and R. V. Rao, “Experimental Investigation on the Effects of Process Parameters of GMAW and Transient Thermal Analysis of AlSl 321 Steel”, Advances in Manufacturing, Vol. 1 Issue 4, pp. 362-377, 2013.
  • E. Lima, J. Wagener, A. Pyzalla and T. Buslaps, "Investigations on Residual Stresses in Friction Stir Welds", in 3nd International Symposium on Friction Stir Welding, Kobe, Japan, 2001.
  • M. V. Dalvi, A. S. More, S. P. Joshi and V. M. Junnarkar, “Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis”, International Journal of Scientific & Engineering Research, Vol. 3, Issue 12, pp. 302-306, 2012.
  • C. S. Baviskar, R. M. Tayade and V. G. Patil, “Determination of Failure Strength of Curved Plate Weld Joint Using Finite Element Analysis”, International Journal of Mechanical Engineering and Robotic Research Vol. 1 Issue 3, 22-30, 2012.
  • F. Tarak, Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes, Theses and Dissertations, Paper 1649, Lehigh University, 2013.
  • M. Law, H. Prask, V. Luzin and T. Gnaeupel-Harold, Residual stress measurements in coil, linepipe and girth welded pipe, Elsevier Science Ltd., Menai, 2006.
  • G. Mi, C. Li, Z. Gao, D. Zhao and J. Niu, “Finite Element Analysis of Welding Residual Stress of Aluminium Plates Under Different Butt Joint Parameters” Engineering Review, Vol. 34, Issue 3, 161-166, 2014.
  • L. Karlsson, Residual Stresses Due to Welding of a Nozzle to a Pressure Vessel, Lund University, Lund, 2005.
  • T. D. Eastop and A. McConkey, Applied Thermodynamics for Engineering Technologist, Fourth Edition, Pearson Education Ltd. ISBN: 8178085577, 2004.
  • R. G. Budynas and J. K. Nisbett, Shigley’s Mechanical Engineering Design, 9th Edition, McGraw-Hill Higher Education: New York, 2011.
  • B. I. Bang, Y. P. Son, K. H. Oh, Y. P. Kim and W. S. Kim, “Numerical simulation of sleeve repair welding of in-service gas pipelines”, Welding Journal, Vol. 81, pp. 273-282, 2002.
  • I. B. Owunna, and A. E. Ikpe “Effects of Parametric Variations on Bead Width of Gas Tungsten Arc Welding of AISI 1020 Low Carbon Steel Plate”, International Journal of Engineering Technology and Sciences”, Vol. 5, Issue 3, pp. 1-13, 2018.
  • I. Owunna, A. E. Ikpe and J. I. Achebo, “Temperature and Time Dependent Analysis of Tungsten Inert Gas Welding of Low Carbon Steel Plate using Goldak Model Heat Source”, Journal of Applied Science and Environmental Management, Vol. 22, Issue 11, pp. 1719-1725, 2018.
  • Ikpe A. E. and I. Owunna, “Optimization of TIG Welding Input Variables for AISI 1020 Low Carbon Steel Plate Using Response Surface Methodology”, International Journal of Engineering Science and Application, Vol. 2, Issue 3, pp. 113-122, 2018.
  • I. B. Owunna and A. E. Ikpe, “Modelling and Prediction of the Mechanical Properties of TIG Welded Joint for AISI 4130 Low Carbon Steel Plates Using Artificial Neural Network (ANN) Approach”, Nigerian Journal of Technology, Vol. 38, Issue 1, pp. 117-126, 2019.
  • I. Owunna, A. E. Ikpe and J. I. Achebo, “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”, European Mechanical Science, Vol. 2, Issue 3, pp. 96-105, 2018.

Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate

Year 2019, Volume: 5 Issue: 2, 50 - 58, 30.06.2019

Abstract

For better
understanding of the residual stress fields associated with Tungsten Inert Gas
(TIG) welding, thermal analysis was carried out using Solid Works 2017 version
and ESI Visual-Environment to compute the transient temperature profile due to
welding thermal loading and resulting stress field in three categories namely;
von-mises stress, axial stress and thermal stress.
A range of welding temperatures
including 1746oC
, 1912oC, 2100oC, 2410oC
and 2800oC
were experimentally applied in the joining process of
AISI 1020 low carbon steel plate of 10 mm thickness and a strain gauge was used
to measure the thermal stresses induced in the steel plate which the average
was recorded as 38,200MPa. The experimental parameters and conditions were applied
in finite element simulation of the same plate dimension, and average von-mises
stress of
37,508 MPa, average axial stress of 30,732 MPa and average
thermal stress of 20,101 MPa was obtained. However, it was observed that the
higher the welding temperature, the higher the stresses induced in the welding
material. Hence, temperature for TIG welding process should be regulated at its
optimum to avoid
fatigue acceleration,
stress propagation, early crack nucleation and possible fracture on the welded
component which may limit the longevity and performance of such component in
its service condition.

References

  • K. Y. Benyounis and A. G. Olabi, “Optimization of Different Welding Process Using Statistical and Numerical Approaches: A Reference Guide”, Advanced Engineering Software, Vol. 39, pp. 483-496, 2008.
  • K. Weman, Welding processes handbook. New York: CRC Press LLC. ISBN 0849317738, 2003.
  • A. E. Ikpe, I. Owunna and I. Ememobong, “Effects of Arc Voltage and Welding Current on the Arc Length of Tungsten Inert Gas Welding (TIG)” International Journal of Engineering Technologies-IJET, Vol. 3, Issue 4, pp. 213-221, 2017.
  • R. K. Jain, Production Technology, Khanna Publishers, New Delhi pp. 344-346, 2001.
  • N. Sura, and V. Mittal, “Experimental Study on Effects of Process Parameters on HAZ of Plain Carbon Steel Using GMAW”, International Journal of Latest Research in Science and Technology, Vol. 4, Issue 2, pp. 167-170, 2015.
  • A. G. Kamble and R. V. Rao, “Experimental Investigation on the Effects of Process Parameters of GMAW and Transient Thermal Analysis of AlSl 321 Steel”, Advances in Manufacturing, Vol. 1 Issue 4, pp. 362-377, 2013.
  • E. Lima, J. Wagener, A. Pyzalla and T. Buslaps, "Investigations on Residual Stresses in Friction Stir Welds", in 3nd International Symposium on Friction Stir Welding, Kobe, Japan, 2001.
  • M. V. Dalvi, A. S. More, S. P. Joshi and V. M. Junnarkar, “Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis”, International Journal of Scientific & Engineering Research, Vol. 3, Issue 12, pp. 302-306, 2012.
  • C. S. Baviskar, R. M. Tayade and V. G. Patil, “Determination of Failure Strength of Curved Plate Weld Joint Using Finite Element Analysis”, International Journal of Mechanical Engineering and Robotic Research Vol. 1 Issue 3, 22-30, 2012.
  • F. Tarak, Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes, Theses and Dissertations, Paper 1649, Lehigh University, 2013.
  • M. Law, H. Prask, V. Luzin and T. Gnaeupel-Harold, Residual stress measurements in coil, linepipe and girth welded pipe, Elsevier Science Ltd., Menai, 2006.
  • G. Mi, C. Li, Z. Gao, D. Zhao and J. Niu, “Finite Element Analysis of Welding Residual Stress of Aluminium Plates Under Different Butt Joint Parameters” Engineering Review, Vol. 34, Issue 3, 161-166, 2014.
  • L. Karlsson, Residual Stresses Due to Welding of a Nozzle to a Pressure Vessel, Lund University, Lund, 2005.
  • T. D. Eastop and A. McConkey, Applied Thermodynamics for Engineering Technologist, Fourth Edition, Pearson Education Ltd. ISBN: 8178085577, 2004.
  • R. G. Budynas and J. K. Nisbett, Shigley’s Mechanical Engineering Design, 9th Edition, McGraw-Hill Higher Education: New York, 2011.
  • B. I. Bang, Y. P. Son, K. H. Oh, Y. P. Kim and W. S. Kim, “Numerical simulation of sleeve repair welding of in-service gas pipelines”, Welding Journal, Vol. 81, pp. 273-282, 2002.
  • I. B. Owunna, and A. E. Ikpe “Effects of Parametric Variations on Bead Width of Gas Tungsten Arc Welding of AISI 1020 Low Carbon Steel Plate”, International Journal of Engineering Technology and Sciences”, Vol. 5, Issue 3, pp. 1-13, 2018.
  • I. Owunna, A. E. Ikpe and J. I. Achebo, “Temperature and Time Dependent Analysis of Tungsten Inert Gas Welding of Low Carbon Steel Plate using Goldak Model Heat Source”, Journal of Applied Science and Environmental Management, Vol. 22, Issue 11, pp. 1719-1725, 2018.
  • Ikpe A. E. and I. Owunna, “Optimization of TIG Welding Input Variables for AISI 1020 Low Carbon Steel Plate Using Response Surface Methodology”, International Journal of Engineering Science and Application, Vol. 2, Issue 3, pp. 113-122, 2018.
  • I. B. Owunna and A. E. Ikpe, “Modelling and Prediction of the Mechanical Properties of TIG Welded Joint for AISI 4130 Low Carbon Steel Plates Using Artificial Neural Network (ANN) Approach”, Nigerian Journal of Technology, Vol. 38, Issue 1, pp. 117-126, 2019.
  • I. Owunna, A. E. Ikpe and J. I. Achebo, “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”, European Mechanical Science, Vol. 2, Issue 3, pp. 96-105, 2018.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Owunna Ikechukwu

İkpe Aniekan E.

Publication Date June 30, 2019
Acceptance Date April 27, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Ikechukwu, O., & Aniekan E., İ. (2019). Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate. International Journal of Engineering Technologies IJET, 5(2), 50-58.
AMA Ikechukwu O, Aniekan E. İ. Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate. IJET. June 2019;5(2):50-58.
Chicago Ikechukwu, Owunna, and İkpe Aniekan E. “Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate”. International Journal of Engineering Technologies IJET 5, no. 2 (June 2019): 50-58.
EndNote Ikechukwu O, Aniekan E. İ (June 1, 2019) Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate. International Journal of Engineering Technologies IJET 5 2 50–58.
IEEE O. Ikechukwu and İ. Aniekan E., “Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate”, IJET, vol. 5, no. 2, pp. 50–58, 2019.
ISNAD Ikechukwu, Owunna - Aniekan E., İkpe. “Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate”. International Journal of Engineering Technologies IJET 5/2 (June 2019), 50-58.
JAMA Ikechukwu O, Aniekan E. İ. Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate. IJET. 2019;5:50–58.
MLA Ikechukwu, Owunna and İkpe Aniekan E. “Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate”. International Journal of Engineering Technologies IJET, vol. 5, no. 2, 2019, pp. 50-58.
Vancouver Ikechukwu O, Aniekan E. İ. Finite Element Analysis of Tungsten Inert Gas Welding Temperatures on the Stress Profiles of AIS1 1020 Low Carbon Steel Plate. IJET. 2019;5(2):50-8.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)