Year 2019, Volume 5, Issue 2, Pages 66 - 71 2019-05-20

Oxidant-Antioxidant Balance Changes in Adipose Tissues of High Fat Diet-Induced Obese Rats: Depot-Specific Manner and Ineffectiveness of N-Acetylcysteine
Yüksek Yağlı Diyetle İndüklenmiş Obez Sıçanların Yağ Dokularındakı Oksidan-Antioksidan Denge Değişiklikleri: Depoya Özgü Tutum ve N-Asetilsisteinin Etkisizliği

Cemil Kahraman [1] , Ahmet Alver [2] , Akın Bodur [3] , İmran İnce Akça [4] , Diler Us Altay [5] , Sinan Canpolat [6]

86 127

Objective: The aims of study were to investigate effects of both N-acetylcysteine (NAC, an antioxidant) and high fat diet (HFD) to oxidative stress in differently located adipose tissues and the liver.


Methods: Our study is created from control, HFD and NAC groups (n=6). Control group was fed with only standard diet. HFD group was fed with only HFD. NAC group was fed with HFD, and additionally that group received NAC (2 g/L). All groups were fed with designated diets for 85 days. Antioxidant enzyme activities, glutathione, and malondialdehyde were measured in epididymal, perirenal, subcutaneous adipose tissues, and liver.


Results: In the HFD group, malondialdehyde (MDA) levels increased in perirenal adipose tissue and liver. In addition, superoxide dismutase (SOD) and catalase activities in the HFD group were lower both epididymal and perirenal adipose tissue, whereas glutathione peroxidase activities were lower in subcutaneous and epididymal adipose tissue. Glutathione was lower in liver tissue alone. In subcutan adipose tissue, the glutathione and SOD activities increased due to NAC administration.


Conclusion: The present findings showed that oxidative stress and antioxidant enzyme profiles were variable in localized adipose tissue in different regions. Thought antioxidant enzyme activities in some tissues increased due to NAC application, these increases were insignificant in terms of oxidant-antioxidant balance.

Amaç: Çalışmanın amacı karaciğer ve farklı yerleşimli yağ dokularındaki oksidatif strese N-asetilsisteinin (NAC, antioksidan) ve yüksek yağlı diyetin (HFD) etkilerini araştırmaktır.


Yöntem: Çalışmamız kontrol, HFD ve NAC gruplarından oluşmaktadır (n=6). Kontrol grubu standart diyetle, HFD grubu yüksek yağ içeren diyetle, NAC grubu ise yüksek yağlı yem ve  içme suyuna katılan antioksidan molekül olan NAC ile beslendi (2 g/L). Tüm gruplar 85 gün boyunca ad libitum olarak beslendi. Beslenme periodunun sonunda karaciğer, subkutan, epididimal ve perirenal yağ dokularında antioksidan enzimler (süperoksit dismutaz, katalaz, glutatyon peroksidaz), glutatyon ve malondialdehit seviyeleri ölçüldü.


Bulgular: HFD grubunda malondialdehit (MDA) seviyesi karaciğer ve perirenal yağ dokusunda yüksekti. Ayrıca HFD grubunda süperoksit dismutaz (SOD) ve katalaz aktivitesi hem epididimal hemde perirenal yağ dokusunda, glutatyon peroksidaz aktivitesi epididimal ve subkutan yağ dokusunda düşüktü. Glutatyon ise sadece karaciğer dokusunda düşük tesbit edildi.  NAC uygulaması subkutan yağ dokusunda SOD ve glutatyonu yükseltti. 


Sonuç: Mevcut bulgular oksidatif stres ve antioksidan enzim profillerinin farklı bölgelerde yerleşmiş adipoz dokusunda değişken olduğunu, NAC uygulamasının bazı dokularda antioksidan enzim aktivitelerini artırmasına rağmen oksidan-antioksidan denge açısından önemli bir etkisinin olmadığını göstermektedir.

  • Caruso C, Balistreri CR, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010. doi:10.1155/2010/802078
  • Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011. doi:10.3390/ijms12053117
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004. doi:10.1172/JCI21625
  • Kwok KHM, Lam KSL, Xu A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Exp Mol Med. 2016. doi:10.1038/emm.2016.5
  • Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev. 2010. doi:10.1111/j.1467-789X.2009.00623.x
  • Deveaud C, Beauvoit B, Salin B, Schaeffer J, Rigoulet M. Regional differences in oxidative capacity of rat white adipose tissue are linked to the mitochondrial content of mature adipocytes. Mol Cell Biochem. 2004.
  • Galinier A, Carriere A, Fernandez Y, et al. Site specific changes of redox metabolism in adipose tissue of obese Zucker rats. FEBS Lett. 2006. doi:10.1016/j.febslet.2006.10.052
  • Long EK, Olson DM, Bernlohr DA. High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biol Med. 2013. doi:10.1016/j.freeradbiomed.2013.05.030
  • Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A, Chamari M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women? ARYA Atheroscler. 2007.
  • Ozata M, Mergen M, Oktenli C, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002. doi:10.1016/S0009-9120(02)00363-6
  • Vincent HK, Vincent KR, Bourguignon C, Braith RW. Obesity and postexercise oxidative stress in older women. Med Sci Sports Exerc. 2005. doi:10.1249/01.MSS.0000152705.77073.B3
  • Ma Y, Gao M, Liu D. N-acetylcysteine Protects Mice from High Fat Diet-induced Metabolic Disorders. Pharm Res. 2016. doi:10.1007/s11095-016-1941-1
  • Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2014. doi:10.1016/j.diabres.2014.09.054
  • Song D, Hutchings S, Pang CCY. Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eur J Pharmacol. 2005. doi:10.1016/j.ejphar.2004.12.018
  • Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-δ activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Metab. 2015. doi:10.1152/ajpendo.00044.2003
  • Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci. 1999. doi:10.1073/pnas.96.19.10857
  • Yang RL, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition. 2006. doi:10.1016/j.nut.2006.08.018
  • Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978. doi:10.1016/0003-2697(78)90342-1.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. doi:10.1016/0003-2697(76)90527-3
  • Aebi H. [13] Catalase in Vitro. Methods Enzymol. 1984. doi:10.1016/S0076-6879(84)05016-3
  • Garcia SC, Schott K, Charão M, et al. Quantification of reduced gluthatione by HPLC-UV in erythrocytes of hemodialysis patients. Biomed Chromatogr. 2008. doi:10.1002/bmc.954
  • Bjørndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents. J Obes. 2011. doi:10.1155/2011/490650
  • Lin Y, Berg AH, Iyengar P, et al. The hyperglycemia-induced inflammatory response in adipocytes: The role of reactive oxygen species. J Biol Chem. 2005. doi:10.1074/jbc.M411863200
  • Galinier A, Carrière A, Fernandez Y, et al. Adipose tissue proadipogenic redox changes in obesity. J Biol Chem. 2006. doi:10.1074/jbc.M506949200
  • Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005. doi:10.1007/s11892-005-0006-3
  • Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307(5708):384-387. doi:10.1126/science.1104343.
  • Matsuzawa-Nagata N, Takamura T, Ando H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism. 2008. doi:10.1016/j.metabol.2008.03.010
  • Findeisen HM, Gizard F, Zhao Y, et al. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity. Obesity. 2011. doi:10.1038/oby.2011.298
  • Ogihara T, Asano T, Katagiri H, et al. Oxidative stress induces insulin resistance by activating the nuclear factor-κB pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia. 2004. doi:10.1007/s00125-004-1391-x
  • Malcolm GT, Bhattacharyya AK, Velez-Duran M, Guzman MA, Oalmann MC, Strong JP. Fatty acid composition of adipose tissue in humans: Differences between subcutaneous sites. Am J Clin Nutr. 1989. doi:10.1093/ajcn/50.2.288.
  • Garaulet M, Pérez-Llamas F, Pérez-Ayala M, et al. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am J Clin Nutr. 2001.doi:10.1093/ajcn/74.5.585.
Primary Language en
Subjects Biochemistry and Molecular Biology
Published Date May 2019
Journal Section Original Article | Basic Medical Sciences
Authors

Orcid: 0000-0002-4494-6063
Author: Cemil Kahraman (Primary Author)
Institution: Duzce University, Faculty of Healt Sciences, Department of Nutrition and Dietetics, Duzce, Turkey
Country: Turkey


Orcid: 0000-0002-9617-6689
Author: Ahmet Alver
Institution: Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
Country: Turkey


Orcid: 0000-0001-7413-2717
Author: Akın Bodur
Institution: Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
Country: Turkey


Orcid: 0000-0003-2232-3444
Author: İmran İnce Akça
Institution: Karadeniz Technical University, Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
Country: Turkey


Orcid: 0000-0002-0465-8403
Author: Diler Us Altay
Institution: Ordu University, Ulubey Vocational School, Chemistry and Chemical Processing Technology Department,

Orcid: 0000-0002-1951-3987
Author: Sinan Canpolat
Institution: Fırat University, Faculty of Medicine, Department of Physiology, Elazığ, Turkey
Country: Turkey


Supporting Institution TUBITAK
Project Number 111S252
Thanks The financial fund of this study was provided by TUBITAK (111S252).
Dates

Publication Date: May 20, 2019