Year 2018, Volume 1, Issue 2, Pages 103 - 150 2018-12-17

Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli
Iodine-rich Waters of Turkey and Oil & Gas Potential of the Onshore

Adil ÖZDEMİR [1]

79 106

Bu çalışmada, Türkiye’nin potansiyel petrol ve doğalgaz yatakları ile ilişkili iyotça zengin sularını belirlemek için yeni bir “ Petrol ve Doğalgaz Sahası Suyu Ayırma Grafiği ” geliştirilmiştir. Bu grafik yardımıyla ülke genelinde çok sayıda iyotça zengin su kaynağı bulunduğu tespit edilmiştir. Türkiye’deki yüzey ve yeraltısularındaki iyot zenginleşmesinin sebebi, derinlerdeki petrol ve doğalgaz yataklarından jeolojik olaylar (tektonizma, volkanizma vb.) etkisiyle yüzeye ve yüzeye yakın bölümlere göç eden hidrokarbonlarca ve iyotça zengin rezervuar sularıdır. Bu göçün en önemli kanıtı, iyotça zengin suların aynı zamanda olgun petrol hidrokarbonlarınca da zengin olmalarıdır. Çünkü, hem iyotça hem de olgun petrol hidrokarbonlarınca zengin sular, petrol ve doğalgaz sahası sularıdır. Çalışmada, oldukça yüksek iyot içerikli çok sayıda su bulunması nedeniyle Batı ve Orta Anadolu bölgelerinin petrol ve doğalgaz potansiyelinin Güneydoğu Anadolu ve Trakya havzalarından daha yüksek olduğu sonucuna ulaşılmıştır. Dolayısıyla, birçok çalışmada öne sürülen görüşlerin aksine, bu çalışmada belirlenen iyotça zengin suların Batı ve Orta Anadolu bölgelerindeki özellikle çok sayıda diri fayın bulunduğu alanlarda yoğunlaşması, çeşitli jeolojik dönemlerde oluşmuş petrol ve doğalgaz yataklarının ülke genelinde genç jeodinamik olaylardan olumsuz etkilenmediğini göstermektedir. Bu çalışmanın diğer bir önemli sonucu da, aktif tektonik (dinamik olarak “hareketli”, “dengesiz”) ve jeolojik olarak karmaşık havzalar içeren Türkiye kara alanlarında yapılacak gelecek petrol ve doğalgaz aramaları için kaynak kaya hedefli organik kaya ve gaz jeokimyası yerine rezervuar hedefli organik hidrojeokimyasal yöntemlerin kullanılmasının daha uygun olduğunun belirlenmesidir. Çalışma ekinde verilen 76 ildeki 5189 adet su kaynağında, klasik petrol jeokimyası analizleri yapılarak bu su kaynaklarındaki iyot miktarlarının ve petrol hidrokarbonlarının jeokimyasal özelliklerinin tespit edilmesi, Türkiye kara alanlarının petrol ve doğalgaz potansiyelinin gerçek bir şekilde tanımlanmasını ve ülke genelinde yeni arama hedeflerinin belirlenmesini sağlayacaktır. 

In this study, to determine iodine-rich waters associated with potential oil and gas deposits of Turkey, a new “Oilfield Water Differentiation Plot” has been developed. With the help of this plot, it has determined that a large number of iodinerich water resources throughout the country. The reason for iodine enrichment in surface waters and groundwaters of Turkey are the hydrocarbons- and iodine-rich reservoir waters migrated from deep oil and gas deposits to surface and near-surface with the effect of geological events (tectonism, volcanism etc.). Most important evidence of this migration is that iodine-rich waters are also rich in mature petroleum hydrocarbons. Waters rich in both iodine and mature petroleum hydrocarbons are oilfield waters. Due to the presence of a large number of waters with quite high of iodine content, the oil and gas potential of Western and Central Anatolia regions have higher than the Southeast Anatolia and Thrace basins. Thus, contrary to opinions put forward in many studies, concentration in areas where especially found a large number of active faults in Western and Central Anatolia regions of iodine-rich waters which determined with this study shows that no affected negatively by young geodynamic events of oil and gas deposits formed in various geological periods. The other important result of this study is determined that to be more suitable the use of reservoir-targeted organic hydrogeochemistry methods instead of the source rock-targeted organic rock and gas geochemistry for future oil and gas exploration in active tectonic (dynamically “excited”, “unbalanced”) and geologically complex basins of Turkey. The determination of iodine contents and geochemical properties of petroleum hydrocarbons in the water resources with classical petroleum geochemistry analysis to be made in 5189 water resources in the 76 cities of Turkey given appendix of this study will provide the identification of real oil and gas potential in onshore Turkey and determination new exploration targets throughout the country.

  • Abrams, M.A., 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Marine and Petroleum Geology, 22, 457-477
  • Allexan, S., Fausnaugh, J., Goudge, C. and Tedesco, S., 1986. The use of iodine in geochemical exploration for hydrocarbons. Assoc. of Petroleum Geochemical Explorationist, II, 1, 12/86, 71-93
  • Alsharhan, A.S. and Nairn, A.E.M., 2003. Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, 843 p.
  • Andreev, B.A. and Klushin, I.G., 1962. Geological Exploration of Gravity Anomalies. Gostoptekhizdat, Leningrad. Russia, 210 p.
  • ARI (Advanced Resources International Inc.), 2013. Northern South America, EIA/ARI World Shale Gas and Shale Oil Resource Assessment, 19 p.
  • Aydın, A., 2004. Gravite anomalilerinin doğrudan yorum yöntemleri ile değerlendirilmesi: Hasankale-Horasan bölgesinden bir uygulama. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 95-102
  • Aydın, A., 1997. Gravite Verilerinin Normalize Edilmiş Tam Gradyan, Varyasyon ve İstatistik Yöntemleri ile Hidrokarbon Açısından Değerlendirilmesi, Model Çalışmalar ve Hasankale-Horasan (Erzurum) Havzasına Uygulanması. Karadeniz Teknik Üniversitesi, Doktora Tezi, 151 s.
  • Bagheri, R., Nadri, A., Raeisi, E., Shariati, A., Mirbagheri, M. and Bahadori, F., 2014. Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environmental Earth Sciences, 71, 7, 3171-3180
  • Baquero, M., Acosta, J., Kassabji, E., Zamora, J., Sousa, J.C., Rodríguez, J., Grobas, J., Melo, L. and Schneider, F., 2009. Polyphase development of the Falcón Basin in Northwestern, Venezuela: implications for oil generation. Geological Society, London, Special Publications, 328, 587-612
  • Berezkin, V.M., 1973. Using in Oil-Gas Exploration of Gravity Method. Nedra, Moscow, 210 p.
  • Birkle, P., Aragon, J.J.P., Portugal, E. and Aguilar, J.L.F., 2002. Evolution and origin of deep reservoir water at the Activo Luna oil field, Gulf of Mexico, Mexico. AAPG Bulletin, 86(3), 457-484
  • Birkle, P., 2005. Compositional link between thermal fluids in Mexican deep reservoirs. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 1-7
  • Birkle, P., 2006. Application of 129I/127I to define the source of hydrocarbons of the Pol-Chuc, Abkatún and Taratunich-Batab oil reservoirs, Bay of Campeche, southern Mexico. Journal of Geochemical Exploration, 89, 15-18
  • Birkle, P., García, B.M. and Padrón, C.M.M., 2009. Origin and evolution of formation water at the Jujo-Tecominoacán oil reservoir, Gulf of Mexico. Part 1: Chemical evolution and water-rock interaction, Applied Geochemistry, 24, 543-554
  • Blakey, R.C., 1979. Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs Area, Utah and Arizona. Utah Geology, Vol. 6 No. 1, 45-54
  • Bohlke, J.K. and Irwin, J.J., 1992. Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids. Geochim. Cosmochim. Acta, 56, 201-225
  • Bojarski, L., 1970. Die Anwendung der hydrochemischen klassifikation bei Sucharbeiten auf Erdol. 2. Angew. Geol., 16:123-125 (in Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science, 1, Elsevier Scientific Publishing Company, Amsterdam, 496 p.)
  • Boschetti, T., Toscani, L., Shouakar-Stash, O., Iacumin, P., Venturelli, G., Mucchino, C., Frape, S.K., 2011. Salt waters of the Northern Apennine Foredeep Basin (Italy): Origin and evolution. Aquatic Geochemistry,17, 71-108
  • Büyükutku, A.G., 2003. The reservoir potential of Miocene carbonate rocks in the Askale and Hınıs-Mus-Van Sub-Basins, East Anatolia, Turkey. Journal of Petroleum Geology, 26 (2), 175-188
  • Caldarelli, C. and Smith, D., 2011. Hydrocarbon systems in the onshore and offshore sicilian fold and thrust belt: new constraints from geochemical data. AAPG International Conference and Exhibition, Milan, Italy, October 23-26, www.searchanddiscovery.com/pdfz/documents/2012/30202caldarelli/ndx_caldarelli.pdf.html
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R. and Sant’Anna Jr., G.L. 2002. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 36, 95-104
  • Chebotarev, I.I., 1955. Metamorphism of natural waters in the crust of weathering, 1-3. Geochim. Cosmochim. Acta, 8: 22-48, 137-170, 198-212
  • Chen, J., Liu, D., Peng, P., Ning, C., Xiaolin, H. and Baoshou, Z., 2016. Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan oilfield, Tarim Basin. Applied Geochemistry, 65, 14-21
  • Chevalier, N., Bouloubassi, I., Birgel, D., Crémière, A., Taphanel, M.H. and Pierre, C., 2011. Authigenic carbonates at cold seeps in the Marmara Sea (Turkey): A lipid biomarker and stable carbon and oxygen isotope investigation. Marine Geology, 288, 112-121
  • Clarke, R.H. and Cleverly, R.W., 1991. Petroleum seepage and post-accumulation migration. In: England WA, Fleet JA (Eds) Petroleum Migration. Geological Society Publication, 265-271
  • Collins, A.G., 1969. Chemistry of some Anadarko basin brines containing high concentration of iodine. Chemical Geology, 4, 169-187
  • Collins, A.G. and Egleeson, G.C., 1967. Iodine abundance in oilfield brines in Oklahoma. Science, 156, 934-935
  • Collins, A. G., Bennett, J. H. and Manuel, O. H., 1971. Iodine and algae in sedimentary rocks associated with iodine rich brines. Geol. Soc. Am. Bull., 82, 2607-2610
  • Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496 p.
  • Connan, J., Kavak, O., Akin, E., Yalçın, M.N., Imbus, K. and Zumberge, J., 2006. Identification and origin of bitumen in Neolithic artefacts from Demirköy Höyük (8100 BC): Comparison with oil seeps and crude oils from southeastern Turkey. Organic Geochemistry, 37, 1752-1767
  • Connolly, D. and Garcia, R., 2012. Tracking hydrocarbon seepage in Argentina’s Neuquén basin. World Oil, June, 101 – 104
  • Coşkun, B., 1994. Oil possibilities of duplex structures in the Amik - Reyhanlı basin, SE Turkey. Journal of Petroleum Geology, 17(4), 461-472
  • Coşkun, S., Dondurur, D., Çifçi, Aydemir, A., Drahor, M.G., 2016. Natural and anthropogenic submarine morphologies revealed by high resolution acoustic data in the Gulf of Izmir, western Turkey. Marine and Petroleum Geology, 71, 211-224
  • Crémière, A., Bayon, G., Ponzevera, E. and Pierre, C., 2013. Paleo-environmental controls on cold seep carbonate authigenesis in the Sea of Marmara. Earth and Planetary Science Letters, 376, 200-211
  • Çelik, M. and Sarı, A., 2002. Geochemistry of formation waters from upper cretaceous calcareous rocks of Southeast Turkey. Journal Geological Society of India. 59, 419-430
  • Çifçi, G., Dondurur, D. and Ergün, M., 2003. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea. Geo-Mar Lett, 23, 311-322
  • Çiftçi, B., Temel, R.O. and Iztan, H.Y.., 2010. Hydrocarbon occurrences in the western Anatolian (Aegean) grabens, Turkey: Is there a working petroleum system ?. AAPG Bulletin, 94, 12, 1827-1857
  • Çoban, M.K., 2017. Petrol Hidrojeolojisi (İkinci Baskı). Poyraz Ofset. 533 s.
  • Çukur, D., Krastel, S., Tomonaga, Y., Çağatay, M.N. and Meydan, A.F., 2013. Seismic evidence of shallow gas from Lake Van, eastern Turkey. Marine and Petroleum Geology, 48, 341-353
  • D'Alessandro, W., Yüce, G., Italiano, F., Bellomo, S., Gülbay, A.H., Yasin, D.U., Gagliano, A.L., 2017. Large compositional differences in the gases released from the Kizildag ophiolitic body (Turkey): Evidences of prevailingly abiogenic origin, Marine and Petroleum Geology, doi: 10.1016/j.marpetgeo.2016.12.017
  • Dean, G.A., 1963. The iodine content of some New Zealand drinking waters with a note on the contribution from sea spray to the iodine in rain. New Zealand J. Science, 6, 208-214
  • Demir, I. and Seyler, B., 1999. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin. Aquatic Geochemistry, 5, 281-311
  • Demirel, I.H., 2004. Petroleum systems in the eastern and central Taurus region, Turkey. Marine and Petroleum Geology, 21, 1061-1071
  • Dia, A.N., Castrec-Rouelle, M., Boulegue, J. and Comeau, P., 1999. Trinidad mud volcanoes: Where do the expelled fluids come from ? . Geochimica et Cosmochimica Acta, 63(7/8), 1023-1038
  • Dickey, P.A., Collins, A.G. and Fajardo M.I., 1972. Chemical composition of deep formation waters in Southwestern Louisiana. AAPG Bulletin, 56(8), 1530-1570
  • Dondurur, D., Çifçi, G., Drahor, M.G. and Coşkun, S., 2011. Acoustic evidence of shallow gas accumulations and active pockmarks in the Izmir Gulf, Aegean Sea. Marine and Petroleum Geology, 28,1505-1516
  • Dresel, P. E. and Rose, A.W., 2010. Chemistry and origin of oil and gas well brines in western Pennsylvania: Pennsylvania Geological Survey, 4th ser., Open-File Report OFOG 10-01.0, 48 p.
  • Edmunds, W.M., 1973. Trace element variations across an oxidationreduction barrier in a limestone aquifer, Proceedings of Symposium on Hydrogeochemistrv and Biogeochemistrv, (Tokyo, 7-9 September 1970), 500-526
  • Egeran, N., 1952. Türkiye’deki tektonik üniteler ile petrol yatakları arasındaki münasebetler, MTA Dergisi, 42-43,110-114
  • Elderfield, H. and Truesdale, V.W., 1980. On the biophilic nature of iodine in seawater. Earth Planet. Sci. Lett. 50, 105-111
  • Engle, M.A., Reyes, F.R., Varonka, M.S., Orem, W.H., Ma, L., Ianno, A.J., Schell, T.M., Xu, P. and Carroll, K.C., 2016. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chemical Geology, 425, 76-92
  • Erentöz, C. ve Ternek, Z., 1959. Türkiye sedimantasyon havzalarında petrol imkânları. MTA Dergisi, 53, 21-36
  • Eroğlu, A. ve Aksoy, N., 2003. Jeotermal suların kimyasal analizi. VI. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi Bildiriler Kitabı, 143-183
  • Escalona, A. ve Mann, P., 2006. An overview of the petroleum system of Maracaibo Basin. AAPG Bulletin, v. 90, no. 4, 657-678
  • Etiope, G., 2015. Natural Gas Seepage : The Earth’s Hydrocarbon Desagging. Elsevier, 199 p.
  • Etiope, G., 2009a. A global dataset of onshore gas and oil seeps : A new tool for hydrocarbon exploration. Oil and Gas Business, 1-10
  • Etiope, G., 2009b. Natural emissions of methane from geological seepage in Europe. Atmospheric Environment, 43, 1430-1443
  • Fabryka-Martin, J.T., 1984. Natural iodine-129 as environmental tracer. University of Arizona. MSc. Thesis, 149 p.
  • Fabryka-Martin, J.T., Bentley, H., Elmore, D. and Airey, P.L., 1985. Natural iodine-129 as environmental tracer: Geochim. Cosmochim. Acta, 49, 337-347
  • Fabryka-Martin, J.T., Davis, S.N. and Elmore, D., 1987. Applications of 129I and 36Cl in hydrogeology: Nucl. Instrum. Methods Phys. Res., B29, 361-371
  • Fehn, U., 2012. Tracing crustal fluids: Applications of natural 129I and 36Cl. Annu. Rev. Earth Planet. Sci, 40, 45-67
  • Fehn, U., Snyder, G.T. and Muramatsu, Y., 2007a. Iodine as a tracer of organic material: 129I results from gas hydrate systems and fore arc fluids. Journal of Geochemical Exploration. 95(1-3),66-80
  • Fehn, U., Moran, J.E., Snyder, G.T. and Muramatsu, Y., 2007b. The initial 129I/I ratio and the presence of “old” iodine in continental margins. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259, 496-502
  • Fehn, U. and Snyder, G.T., 2005. Residence times and source ages of deep crustal fluids: Interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids, 5, 42-51
  • Fehn, U. and Snyder, G.T., 2003. Origin of iodine and 129I in volcanic and geothermal fluids from the North Island of New Zealand: Implications for subduction zone processes. Economic Geology, Special Publications,10, 159-170
  • Fehn, U., Peters, E.K., Tullai-Fitzpatrick, S., Kubik, P.W., Sharma, P., Teng, R.T.D., Gove, H.E. and Elmore, D., 1992. 129I and 36Cl concentrations in waters of the eastern Clear Lake Area, California: residence times and source ages of hydrothermal fluids. Geochimica et Cosmochimica Acta, 56, 2069-2079
  • Fehn, U., Tullai-Fitzpatrick, S., Teng, R.T.D., Gove, H.E., Kubik, P.W., Sharma, P. and Elmore, D., 1990. Dating of oil field brines using 129I. Nuclear Instruments and Methods in Physics Research B52, 446-450
  • Fehn, U., Tullai, S., Teng, R.T.D., Elmore, D. and Kubik, P.W., 1987. Determination of 129I in heavy residues of two crude oils: Nucl. Instrum. Methods Phys. Res., B52, 446-450
  • Fisher, R.S. and Kreitler, C.W., 1987. Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, U.S.A. Applied Geochemistry, 2, 459-76
  • Franks, S.G. and Uchytil, S.J., 2016. Geochemistry of formation waters from the subsalt Tubular Bells Field, offshore Gulf of Mexico: Implications for fluid movement and reservoir continuity, AAPG Bulletin, 100(6), 943-967
  • Fu, Y. and Zhan, H., 2009. On the origin of oil-field water in the Biyang Depression of China. Environmental Geology, 58,1191-1196
  • Garcia-Pineda, O., Zimmer, B., Howard, M., Pichel, W., Li, X., and MacDonald, I., 2009. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA), Can. J. Remote Sens.,35 (5), 411-421
  • Garcı´a-Garcı´a, A., Orange, D.L., Maher, N.M., Heffernan, A.S., Fortier, G.S. and Malone, A., 2004. Geophysical evidence for gas geohazards of Iskenderun Bay, SE Turkey. Marine and Petroleum Geology, 21, 1255-1264
  • Geist, E.L., Childs, J.R. and Scholl, D.W., 1987. Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge. Marine and Petroleum Geology, 4, 334-352
  • Granath, J. W., and P. Casero, 2004. Tectonic setting of the petroleum systems of Sicily. in R. Swennen, F. Roure, and J. W. Granath, eds., Deformation, Fluid Flow and Reservoir Appraisal in Foreland Fold and Thrust Belts: AAPG Hedberg Series, no. 1, p. 391-411
  • Griffin, W.R., 1949. Residual gravity in theory and practice. Geophysics, 14, 39-58
  • Gümüş, Ö. ve Altan, Y., 1995. Petrolün Tarihçesi ve Türkiye’de Açılan Petrol Kuyuları. Petrol İşleri Genel Müdürlüğü Yayını, 178 s.
  • Gürgey, K., Simoneit, B.R.T., Batı, Z., Karamanderesi, İ.H. and Varol, B., 2007. Origin of petroliferous bitumen from the Büyük Menderes-Gediz geothermal graben system, Denizli-Sarayköy, western Turkey. Applied Geochemistry, 22, 1393-1415
  • Harkness, J.S., Dwyer, G.S., Warner, N.R., Parker, K.M., William A. Mitch, W.A. and Vengosh, A., 2014. Iodide, bromide and ammonium in hydraulic fracturing and oil and gas wastewaters: Environmental implications. Environ. Sci. Technol. DOI: 10.1021/es504654n
  • Heylmun, E.B., 1964. Shallow Oil and Gas Possibilities in East And South-Central Utah. Utah Geological and Mineralogical Survey, Special Studies 8, 39 p.
  • Hitchon, B. and Billings, G.K. and Klovan, J.E., 1971. Geochemistry and origin of formation waters in the western Canada sedimentary basin-III. Factors controlling chemical composition. Geochimica et Cosmochimica Acta. 35, 567-598
  • Hitchon, B. and Horn, M.K., 1974. Petroleum indicators in formation waters from Alberta, Canada. AAPG Bulletin, 58(3), 464-473
  • Hoşgörmez, H., Etiope, G. and Yalçın, M.N., 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids, 8, 263-273
  • Hoşhan, P., Çelik, S. and Çanga, B., 2008. Inspection and control of corrosion problems for production oil wells tubing and rod in Adıyaman oil fields. International Corrosion Symposium, October 22-25, 2008, Izmir, Turkey, pp. 13-20
  • Huang, B., Xiao, X., Li, X. and Cai, D., 2009. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea. Marine and Petroleum Geology, 26, 928-935
  • Hummel, S., 2011. The Use of Iodine to Characterize Formation Waters in Oil and Gas Fields. Syracuse University. MSc. Thesis, 66 p.Ivakhnenko, O.P, Abirov, R. and Logvinenko, A., 2015. New method for characterisation of petroleum reservoir fluid-mineral deposits using magnetic analysis. Energy Procedia, 76, 454-462
  • Ivarez, A.A., Reich, M., Pe´rez-Fodich, A., Snyder, G., Muramatsu, Y., Vargas, G. and Fehn, U., 2015. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochimica et Cosmochimica Acta, 161, 50-70
  • Ilvarez, F., Reich, M., Snyder, G., Perez-Fodich, A., Muramatsu, Y., Daniele, L. and Fehn, U., 2016. Iodine budget in surface waters from Atacama: Natural and anthropogenic iodine sources revealed by halogen geochemistry and iodine-129 isotopes. Applied Geochemistry, 68, 53-63
  • James, K.H., 2000. The Venezuelan hydrocarbon habitat, Part 1: Tectonics, structure, palaeogeography and source rocks. Journal of Petroleum Geology, 23 (1), 5-53
  • Jamil, A.K., 2004. Hydrogeochemical indices for the prospecting of hydrocarbon and native sulphur deposits. Iraqi Jour. of Earth Sci., 4(2), 1-10
  • Jones, V.T. and Drozd, R.J., 1983. Prediction of oil or gas potential by near-surface geochemistry. AAPG Bulletin, 67, 932-952
  • Kaiho, T. (Ed.), 2015. Iodine Chemistry and Applications. John Wiley & Sons, Inc., 635 p.
  • Kara-Gülbay, R. and Korkmaz, S., 2013. Organic geochemistry of the asphaltite occurrences in the Gümüşhacıköy (Amasya) Area, Northern Turkey. Fuel, 107, 74-83
  • Kara-Gülbay, Kırmacı, M.Z. and Korkmaz, S., 2012. Organic geochemistry and depositional environment of the Aptian bituminous limestone in the Kale Gümüşhane area (NE-Turkey): An example of lacustrine deposits on the platform carbonate sequence. Organic Geochemistry, 49, 6-17
  • Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I. and Mogilevsky, G.A., 1959. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 238 p.
  • Kavak, O., Erik., N. ve Connan, J., 2010. Türkiye’deki Hidrokarbon (Petrol/Bitüm) Sızıntılarının Organik Jeokimyasal Açıdan Değerlendirilmesi. TÜBİTAK ÇAYDAĞ 107Y201 nolu Proje. 168 s (Yayımlanmamış)
  • Kendrick, M.A., Phillips, D., Wallace, M. and Miller, J.McL., 2011. Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: A case study from the Lennard Shelf, Australia. Applied Geochemistry, 26, 2089-2100
  • Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J. and Fries, T.L., 1987. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A., Applied Geochemistry, 2, 543-561
  • Khilyuk, L.F., Chilingar, G.V., Robertson, J.O. and Endres, B., 2000. Gas Migration - Events Preceding Earthquakes. Gulf Publishing Company, 389 p.
  • Kim, R., Kim, J., Ryu, J., Chang, H., 2006. Salinization properties of a shallow groundwater in a coastal reclaimed area, Yeonggwang, Korea. Environmental Geology, 49, 1180-1194 DOI:10.1007/s00254-005-0163-3
  • Kireeva, T.A., 2010. Genesis of the Underground Water from the White Tiger Deposit, South Vietnam Shelf, in Relation to Its Petroleum Resource Potential. Moscow University Geology Bulletin, 65(4), 244-249
  • Kokh, A.A. and Novikov, D.A., 2014. Hydrodynamic conditions and vertical hydrogeochemical zonality of groundwater in the western Khatanga artesian basin. Water Resources, 41(4), 396-405
  • Kruglyakova, R. P., Byakov, Y. A., Kruglyakova, M. V., Chalenko, L. A. and Shevtsova, N. T., 2004. Natural oil and gas seeps on the Black Sea floor. Geo-Mar. Lett., 24, 150-162
  • Kurchikov, A.R. and Plavnik, A.G., 2009. Clustering of groundwater chemistry data with implications for reservoir appraisal in West Siberia. Russian Geology and Geophysics 50, 943-949
  • Kurtman, F. ve Akkuş, M.F., 1971. Doğu Anadolu’daki ara basenler ve bunların petrol olanakları. MTA Dergisi, 77, 1-9
  • Kvenvolden, K.A. and Cooper, C.K., 2003. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett, 23, 140-146
  • Land, L.S., 1991. Evidence for vertical movement of fluids, Gulf Coast Sedimentary Basin: Geophys. Res. Lett., 18(5) 919-922
  • Land, L.S., 1995. Na-Ca-Cl saline formation waters, Frio formation (Oligocene), south Texas, USA: Products of diagenesis. Geochimica et Cosmochimica Acta, 59, 11, 2163-2174
  • Lavrushina, V.Y., Guliev, I.S., Kikvadze, O.E. Aliev, A.A., Pokrovskya, B.G. and Polyak, B.G., 2015. Waters from mud volcanoes of Azerbaijan: Isotopic-geochemical properties and generation environments. Lithology and Mineral Resources, 50, 1, 1-25
  • Leaver, J.S. and Thomasson, M.R. 2002. Case studies relating soil-iodine geochemistry to subsequent drilling results. in Schumacher, D., and LeSchack, L. D., eds., Surface Exploration Case Histories: Application of Geochemistry, Magnetics and Remote Sensing, AAPG Studies in Geology no. 48, and SEG Geophysical References Series no. 11, 41-57
  • Lee, R., Seright, R., Hightower, M., Sattler, A., Cather, M., McPherson, B., Wrotenbery, L., Martin, D. and Whitworth, M. 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%202002/Papers/ Robert_Lee_PWC2002.pdf
  • Lemay, T.G. and Konhauser, K.O., 2006. Water Chemistry of Coalbed Methane Reservoirs. Alberta Geological Survey. Special Report 081. 354 p.
  • Li, K., Cai, C., He, H., Jiang, L., Cai, L., Xiang, L., Huang, S. and Zhang, C., 2011. Origin of palaeo waters in the Ordovician carbonates in Tahe oilfield, Tarim Basin: constraints from fluid inclusions and Sr, C and O isotopes. Geofluids, 11, 71-86
  • Link, W.K., 1952. Significance of oil and gas seeps in world oil exploration. AAPG Bulletion,36,1505-1541
  • Liu, X., Fehn, U., Teng, R.T.D., 1997. Oil formation and fluid convection in Railroad Valley, NV: a study using cosmogenic isotopes to determine the onset of hydrocarbon migration. Nuclear Instruments and Methods in Physics Research B 123 (1997) 356-360
  • Lloyd, J.W., Howard, K.W.F., Pacey, N.R. and Tellam, J.H., 1982. The value of iodide as a parameter in the chemical characterization of groundwaters, Journal of Hydrology, 57, 247-265
  • Logan, G.A., Jones, A.T., Ryan, G.J., Wettle, M., Thankappan, M., Groesjean, E., Rollet, N. and Kennard, J.M., 2008. Review of Australian Offshore Natural Hydrocarbon Seepage Studies. Geoscience Australia Record: 2008/17. 235 p.
  • Lu, Z., Hummel, S.T., Lautz, L.K., Hoke, G.D., Zhou, X., Leone, J., Siegel, D.I., 2015. Iodine as a sensitive tracer for detecting influence of organic-rich shale in shallow groundwater. Applied Geochemistry, 60, 29-36
  • Lu, Z., Hensen, C., Fehn, U. and Wallmann, K., 2008. Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochem. Geophys. Geosyst., 9, Q10006, doi:10.1029/2008GC002156.
  • Lyatsky, H.V., Thurston, J.B., Brown, R.J. and Lyatsky, V.B., 1992. Hydrocarbon exploration applications of potential field horizontal gradient vector maps. Canadian Society of Exploration Geophysicists Recorder, 17(9), 10-15
  • Lykousis, V., Alexandri, S., Woodside, J., de Lange, G., Da¨hlmann, A., Perissoratis, C., Heeschen, K., Ioakim, Chr., Sakellariou, D., Nomikou, P., Rousakis, G., Casas, D., Ballas, D. and Ercilla, G., 2008. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Marine and Petroleum Geology. doi:10.1016/j.marpetgeo.2008.05.002
  • Macdonald, I.R., 2002. Spatial and temporal patterns in seep communities. In: Macdonald I.R. (ed) Stability and Change in Gulf of Mexico Chemosynthetic Communities. US Dept Interior, Minerals Management Service, New Orleans, Louisiana. OCS Study MMS 2002-036, Vol: II, Tech Rep, 7.1-7.43
  • Macgregor, D.S., 1993. Relationships between seepage, tectonics and subsurface petroleum reserves. Marine and Petroleum Geology, 10, 606-619
  • Macpherson, G.L., 1992. Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bulletin, 76(5), 740-757
  • Mani, D., Kumar, T.S., Rasheed, M.A., Patil, D.J., Dayal, A.M., Rao, T.G. and Balaram, V., 2011. Soil iodine determination in Deccan Syneclise, India: Implications for near surface geochemical hydrocarbon prospecting. Natural Resources Research, 20(1), 75-88
  • Martin, J.B., Gieskes, J.M., Torres, M. and Kastner, M., 1993. Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochimico et Cosmochlmica Acta, 51, 4377-4389
  • Mazor, E., 2004. Global Water Dynamics (Shallow and Deep Groundwater, Petroleum Hydrology, Hydrothermal Fluids, and landscaping). Marcel Dekker, Inc., 393 p.
  • Mazzini, M., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T. and Banks. D., 2009. When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan, Marine and Petroleum Geology, 26,1704-1715
  • Means, J.L. and Hubbard, N.J., 1987. Short-chain aliphatic acid anions in deep subsurface brines A review of their origin, occurrence, properties, and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas. Org. Geochem. 11(3), 177-191
  • Meinhold, R., 1972. Hydrodynamic control of oil and gas accumulation as indicated by geothermal, geochemical and hydrological distribution patterns, Trans. 8th World Petrol. Cong., 2, 55-66
  • Mirnejad, H., Sisakht, V., Mohammadzadeh, H., Amini, A.H., Rostron, B.R. and G. Haghparast, G., 2011. Major, minor element chemistry and oxygen and hydrogen isotopic compositions of Marun oil-field brines, SW Iran: Source history and economic potential. Geological Journal, 46, 1-9
  • Molovichko, A.K., Kostitsin, V.I. and Tarunina, O.L., 1989. Detailed Gravity Prospecting for Oil and Gas. Nedra, Moscow, 1989. 150 p.
  • Morrell, R.G. (ed.)., 1995. Petroleum Exploration in Northern Canada : A Guide to Oil and Gas Exploration and Potential. Northern Oil and Gas Directorate Indian and Northern Affairs Canada. 110 p.
  • Moran, J.E., Fehn, U. and Hanor, J.S., 1995. Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129I. Geochim. Cosmochim. Acta 59, 5055-5069
  • Morton, Q.M., 2015. River of oil - early oil exploration in Iraq. Geoexpo. Vol. 12, No. 1
  • MTA, 2005. Türkiye Jeotermal Kaynaklar Envanteri (Akkuş, İ., Akıllı, H., Ceyhan, S., Dilemre, A. ve Tekin, Z.). Envanter Serisi : 201, 849 s.
  • Mudretsova, EA, 1984. The downward continuation of gravity and magnetic field values over oil and gas reservoirs. Prikladnaya Geofizika, 108, 59-77
  • Muramatsu, Y., Doi, T., Tomaru, H., Fehn, U., Takeuchi, R. and Matsumoto, R., 2007. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl. Geochem., 22, 534-556
  • Muramatsu, Y., Yoshida, S., Fehn, U., Amachi, S. and Ohmomo, Y., 2004. Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment. Journal of Environmental Radioactivity, 74, 221-232
  • Muramatsu, Y. and Wedepohl, K.H., 1998. The distribution of iodine in the earth’s crust. Chemical Geology, 147, 201-216
  • Narimanov, A.A. and Palaz, I., 1995. Oil history, potential converge in Azerbaijan. Oil & Gas Journal,93,21
  • Novikov, D.A. and Shvartsev, S.L., 2009. Hydrogeological conditions of the Pre-Yenisei petroleum subprovince. Russian Geology and Geophysics, 50, 873-883
  • Novikov, D.A., 2012. Hydrogeology of oil-and-gas bearing deposits of the Severnyi arch (Northern areas of the West Siberian Megabasin (WSMB). Oil and Gas Business, 4, 521-535
  • Novikov, D.A., 2013a. Hydrogeochemical features of petroleum-bearing deposits of the Yamal Peninsula. Oil and Gas Business, 1, 114-143
  • Novikov, D.A., 2013b. Hydrogeology of the western part of the Yenisei-Khatanga regional trough. Neftegazovaya Geologiya, Teoriya I Praktika, 8(1), www.ngtp.ru/rub/4/2_2013.eng.pdf
  • Okandan, E., Mehmetoğlu, T., Doyuran, V., Demiral, B., Parlaktuna, M., Gümrah, F., Kuru, E., Behlülgil, K., Karacan, Ö. ve Karaaslan, U., 1994. Petrol Arama ve Üretim Faaliyetlerinin Çevre Üzerindeki Etkileri. TÜBİTAK Proje No.YBAG-0057, 92 s. (Yayımlanmamış)
  • Oppo, D., Capozzi, R., Nigarov, A. and Esenov, P., 2014. Mud volcanism and fluid geochemistry in the Cheleken Peninsula, western Turkmenistan, Marine and Petroleum Geology, 57, 122-134
  • Oppo, D. and Capozzi, R., 2015. Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136
  • Ovchinnikov, N.V., 1960. Patterns in the alteration of the chemical composition of subsurface waters of the Azqv-Kuban Trough and the distribution of iodine and bromine therein. Izv. Vyssh. Uchebn., Zaved., Geol. Razvedka, 3, 134-138 (in Collins, A.G, 1975. Geochemistry of Oilfield Waters. Developments in Petroleum Science-1, Elsevier, 496 p.).
  • Önen, K., 2012. Güneydoğu Anadolu Bölgesi’ndeki Hidrokarbon (Petrol, Bitüm) Sızıntılarında Uygulanan Jeokimyasal Analiz Yöntemlerinin Yorumlanması ve Hidrokarbon Sızıntılarındaki Metal Analizleri, Dicle Üniversitesi, Yüksek Lisans Tezi, 177 s (Yayımlanmamış).
  • Özdemir, A., 2009. İyot üretimi amaçlı yapılan sondaj çalışmaları. Madencilik Türkiye Dergisi, 1, 26-28
  • Özdemir, A., 2017. Türkiye’nin Yüzey ve Yeraltısularında İyot Ölçümleri. 10 s. (Yayınlanmamış)
  • Özdemir, A., 2018a. Relationships of formation, migration and trapping between petroleum and iodine (Petrol ve iyot arasındaki oluşum, göç ve kapanlanma ilişkileri). International Journal of Natural and Engineering Sciences (baskıda)
  • Özdemir, A., 2018b. Güneydoğu Anadolu havzasında petrol ile iyot ilişkisi. MTA Dergisi (baskıda)
  • Özdemir, A., 2018c. Hasanoğlan (Ankara) petrol sisteminin organik hidrojeokimyasal kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi (baskıda)
  • Özdemir, A., 2018d. Suda TPH (Toplam Petrol Hidrokarbonları) analizinin petrol ve doğalgaz arama amaçlı kullanımı: Türkiye’den ilk önemli sonuçlar. Mühendislik Bilimleri ve Tasarım Dergisi (incelemede)
  • Özdemir, A., 2018e. İyotça zengin suların oluşum mekanizmaları ve petrol sistemleri ile ilişkileri, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi (incelemede)
  • Özdemir, A. ve Şahinoğlu, A., 2018. Ulukışla (Niğde) havzasının petrol ve doğalgaz potansiyeli. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi (incelemede)
  • Özdemir, A., Turgay, S.O. and Şahinoğlu, A., 2018. High accuracy estimation with computer-aided hydrogeochemical methods of oil and gas deposits in wildcat sedimentary basins. Journal of Applied Geology and Geophysics, 6(4), 62-104
  • Planke, S., Svensen, H., Hovland, M., Banks, D.A. and Jamtveit, B., 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 23, 258-268
  • Parnell, J., Baron, M., Mann, P. and Carey, P., 2003. Oil migration and bitumen formation in a hydrothermal system, Cuba. Journal of Geochemical Exploration, 78-79, 409-415
  • Pašteka, R., 2000. 2D semi-automated interpretation methods in gravimetry and magnetometry. Acta Geologica Universitatis Comeniana, 55, 5-50
  • Pirson, S.J., 1942. Theoretical and economic significance of geodynamic prospecting. World Petroleum, 13, 38-42
  • Potter II, R. W., Harrington, P.A., Silliman, A.H. and Viellenave, J.H., 1996. Significance of geochemical anomalies in hydrocarbon exploration, in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66, 431-439
  • Qiao, X., Zhang, Z., Yu, J. and Ye, X., 2008. Performance characteristics of a hybrid membrane pilot-scale plant for oilfield-produced wastewater. Desalination, 225(1-3),113-122
  • Rachinsky, M.Z. and Kerimov, V.Y., 2015. Fluid Dynamics of Oil and Gas Reservoirs. Scrivener Publishing LLC - John Wiley and Sons, Inc., 613 p.
  • Reich, M., Snyder, G.T., Álvarez, F., Pérez, A., Palacios, C., Vargas, G., Cameron, E.M., Muramatsu, Y. and Fehn, U., 2013. Using iodine isotopes to constraın supergene fluid sources in arid regions: Insights from the Chuquicamata Oxide Blanket. Economic Geology, 108, 163-171
  • Reichter, B.C. and Kreitler, C.W., 1993. Geochemical Techniques for Identifying Sources of Groundwater Salinitization. CRC Press, 272 s.
  • Rogers, S.G., 1917. Chemical relations of the oil-fıeld waters in San Joaquin Valley, California. United States Geological Survey. 119 p.
  • Rowan, E.L., Engle, M.A., Kraemer, T.F., Schroeder, K.T., Hammack, R.W. and Doughten, M.W., 2015. Geochemical and isotopic evolution of water produced from Middle Devonian Marcellus shale gas wells, Appalachian basin, Pennsylvania. AAPG Bulletin, 99(2), 181-206
  • Sakroon, S.A., 2008. Effect of oilfield brine on groundwater quality in Marmul area, Sultanate of Oman. United Arab Emirates University, MSc. Thesis, 146 p.
  • Santschi, P.H., Xu, C., Zhang, S., Schwehr, K.A., Grandbois, R., Kaplan, D.I. and Yeager, C., 2016. Iodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry (2016), doi: 10.1016/j.apgeochem.2016.11.009
  • Sassen, R., Sweet, S.T., Milkov, A.V., DeFreitas, D.A. and Kennicutt II, M.C., 2001. Thermogenic vent gas and gas hydrate in the Gulf of Mexico slope: Is gas hydrate decomposition significant ?. Geology, 29, 2, 107-110
  • Satyana, A.H., 2015. Subvolcanic hydrocarbon prospectivity of Java: Opportunities and challenges. Proceedings, Indonesian Petroleum Association. Thirty-Ninth Annual Convention & Exhibition, May 2015. IPA15-G-105
  • Schoeller, H., 1955. Geochemie des eaux souterraines. Rev. Znst. Fr. Pet., 10:181-213, 219-246, 507-552
  • Schoeneich, K., 1971. Indices of oil bearing deposits as based on the formation waters of Poland. Nafta (Pol.), 27, 154-157 (in Coustau, H., 1977. Formation waters and hydrodynamics. Journal of Geochemical Exploration, 7, 213-241)
  • Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C.H., Festøy, M., Galland, O. and Jerram, D.A., 2017. Effects of igneous intrusions on the petroleum system: a review. First Break, 35, 1-10
  • Shi, P., Fu, B., Ninomiya, Y., Sun, J. and Li, Y., 2012. Multispectral remote sensing mapping for hydrocarbon seepage-induced lithologic anomalies in the Kuqa foreland basin, south Tian Shan. Journal of Asian Earth Sciences, 46, 70-77
  • Sobornov, K., 2015. Russian Fold Belts : The Next Hot Play?. Geoexpro. Vol. 12, No. 3,22-26
  • Sorkhabi, R., 2009. Oil from Babylon to Iraq. Geoexpro, Vol. 6, No. 2
  • Sorkhabi, R., 2008. The Centenary of the first oil well in the Middle East. Geoexpro, Vol. 5, No. 5
  • Starostenko, V.I., Rusakov, O.M., Shnyukov, E.F., Kobolev, V.P. and Kutas, R.I., 2010. Methane in the northern Black Sea: characterization of its geomorphological and geological environments. Sosson, M., Kaymakci, N., Stephenson, R. A., Bergerat, F. & Starostenko, V. (eds) Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications, 340, 57- 75
  • Stueber, A.M., Walter, L.M., Huston, T.J. and Pushkar, P., 1993. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochimica et Cosmochimica Acta. 57, 163-784
  • Sudo, Y., 1967. Geochemical study of brine from oil and gas fields in Japan. Journal of The Japanese Association of Petroleum Technologists. 32, 5, 286-296
  • Sulin, V.A., 1946. Waters of Petroleum Formations in the System of Nature Waters. Gostoptekhizdat, Moscow, 96 p. (in Russian)
  • Summons, R.E., Rocher, D., Zumberge, J.E. and Al-Ameri, T.K., 2013. A geochemical approach to defining the active petroleum systems of the Zagros fold belt in northern Iraq. Hydrocarbon Exploration in the Zagros Mountains of Iraqi Kurdistan and Iran, 18-19
  • Suresh, G., Heygster, G., Bohrmann, G., Melsheimer, C. and Körber, J., 2013. An automatic detection system for natural oil seep origin estimation in SAR images. IGARSS 2013, DOI: 10.1109/IGARSS.2013.6723600
  • Snyder, G.T. and Fehn, U., 2002. Origin of iodine in volcanic fluids: 129I results from the Central American Volcanic Arc. Geochimica et Cosmochimica Acta, 66(21), 3827-3838
  • Sukharev, G.M., 1948. Hydrogeological conditions of formation of oil and gas deposits in Tersk-Dagestan oil province. Groz. obi. izd-vo (in Kartsev, A. A.,
  • Tabasaranskii, S. A., Subbota, M. I. and Mogilevsky, G. A., 1959. Geochemical methods of prospecting and exploration for petroleum and natural gas. P. A. Witherspoon and W. D, Romey, eds., English translation, Berkeley, Univ. Calif. Press, 238 p.)
  • Şen, Ş., 2013. New evidences for the formation of and for petroleum exploration in the fold-thrust zones of the central Black Sea Basin of Turkey. AAPG Bulletin, v. 97, no. 3 (March 2013), 465-485
  • Taşman, E.C., 1950. Türkiye’deki hidrokarbon tezahürlerinin stratigrafik ve coğrafik dağılımı, MTA Dergisi, 40,41-50
  • Tedesco, S.A., Goudge, C., Fausnaugh, J. and Alexon, S., 1987. Iodine-an exploration tool for oil and gas: Oil & Gas Journal, 85(26), 74-77
  • Tedesco, S. and Goudge, C., 1989. Application of iodine surface geochemistry in the Denver-Julesburg Basin, Association of Petroleum Geochemical Explorationists Bulletin, 5(I), 49-72
  • Tedesco, S.A., 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., p. 206.
  • Terzi, A.T., 2007. Bağdat-Musul’da Paylaşılamayan Miras Petrol ve Arazi (1876 - 1909). Truva Yayınları, 271 s.
  • Togo, Y.S., Kazahaya, K., Tosaki, Y., Morikawa, N., Matsuzaki, H., Takahashi, M. and Sato, T., 2014. Groundwater, possibly originated from subducted sediments, in Joban and Hamadori areas, southern Tohoku, Japan. Earth, Planets and Space, 66, 131
  • Tomaru, H., Lu, Z., Fehn, U. and Muramatsu, Y., 2009a. Origin of hydrocarbons in the Green Tuff region of Japan: 129I results from oil field brines and hot springs in the Akita and Niigata Basins. Chemical Geology, 264, 221-231
  • Tomaru, H., Fehn, U., Lu, Z., Takeuchi, R., Inagaki, F., Imachi, H., Kotani, R., Matsumoto, R. and Aoike, K., 2009b. Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu Shakedown Cruise. Resource Geology, 59(4), 359-373
  • Tooth, J., 1987. Petroleum hydrogeology: a potential application of groundwater science. Journal of Geological Survey of India, 29(1), 172-179
  • Tryon, M.D., Henry, P. and Hilton, D.R., 2012. Quantifying submarine fluid seep activity along the North Anatolian Fault Zone in the Sea of Marmara. Marine Geology, 315-318, 15-28
  • Tullai, S., Tubbs, L. E. and Fehn, U., 1987. Iodine extraction from petroleum for analysis of 129I/I ratios by AMS: Nucl. Instrum. Methods Phys. Res. B, 29, 383-386U.S. Geological Survey National Produced Waters Geochemical Database v2.2.
  • Van Der Meer, F.P., Van Dijk, H., Van Der Werff, H. and Yang, H., 2002. Remote Sensing and petroleum seepage: A review and case study, Terra Nova,14,1,1-17
  • Veil, J.A. 2006. Comparison of two international approaches to controlling risk from produced water discharges. Paper presented at the 70th PERF meeting, Paris, France
  • Vel’kov, A.M., 1960. Hydrochemical indicators of gas-oil productivity. Petroleum Geology: A digest of Russian literature on Petroleum Geology, 4, 9B, 539-541
  • Voutchkova, D.D., Ernstsen, V., Hansen, B., Sørensen, B.L., Zhang, C. and Kristiansen, S.M., 2014. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: A new conceptual model for Denmark. Science of the Total Environment, 493, 432-444
  • Wei, L., Limin, L. and Xiaohong, C., 1996. Geochemical characteristics of oilfield waters from the Turpan Depression, Xinjiang and their petroleum geological significance. Chinese Journal of Geochemistry, 15(4), 374-382
  • Whittemore, D.O., Basel, C.L., Galle, O.K. and Waugh, T.C., 1981. Geochemical Identification of Saltwater Sources in the Smoky Hill River Valley, McPherson, Saline, and Dickson Countries, Kansas, Kansas Geological Survey, Open-file Report 81-6, p. 78
  • White, D.E., 1957. Thermal waters of volcanic origin. Bulletin of the Geological Society of America, 68, 1637-1668
  • Williams, A. 2016. Database integration improves hydrocarbon seep evaluation. Offshore Magazine. (http://www.offshore-mag.com/articles/print/volume-76/issue-2/geology-geophysics/database-integration-improves-hydrocarbon-seep-evaluation.html)
  • Witte, J. and Schönicke, O., 2016. Unlocking the petroleum potential of Iran. Geoexpro,13,2
  • Worden, R.H., 1996. Controls on halogen concentrations in sedimentary formation waters. Mineralogical Magazine, 60, 259-274
  • Xuejing, X. and Binzhong, Y., 1989. Application of multiparametric geochemical methods in the search for oil in the Qinggang region near Daqing Oil Field: J. Geochem. Explor., 33, 203-213
  • Xun, Z., Cijun, L., Xiumin, J., Qiang, D. and Lihomg, T., 1997. Origin of subsurface brines in the Sichuan basin, Groundwater, 35(1), 53-58
  • Yalçın, M.G. ve Şener, M., 2009. Basınçlı akışkan sondajlarında dolaşım bozukluğundan kaynaklanan fışkırma sorununa bir örnek: Nevşehir - Gülşehir, Yakatarla CO2 sondajı. Jeoloji Mühendisliği Dergisi, 33 (2), 117-142
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Author: Adil ÖZDEMİR (Primary Author)
Institution: Adil Özdemir Danışmanlık
Country: Turkey


Dates

Publication Date: December 17, 2018

Bibtex @research article { smutgd461801, journal = {Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi}, issn = {2651-3544}, address = {Hakan ÇAĞLAR}, year = {2018}, volume = {1}, pages = {103 - 150}, doi = {}, title = {Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli}, key = {cite}, author = {ÖZDEMİR, Adil} }
APA ÖZDEMİR, A . (2018). Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 1 (2), 103-150. Retrieved from http://dergipark.org.tr/smutgd/issue/41240/461801
MLA ÖZDEMİR, A . "Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli". Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 1 (2018): 103-150 <http://dergipark.org.tr/smutgd/issue/41240/461801>
Chicago ÖZDEMİR, A . "Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli". Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 1 (2018): 103-150
RIS TY - JOUR T1 - Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli AU - Adil ÖZDEMİR Y1 - 2018 PY - 2018 N1 - DO - T2 - Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi JF - Journal JO - JOR SP - 103 EP - 150 VL - 1 IS - 2 SN - 2651-3544- M3 - UR - Y2 - 2018 ER -
EndNote %0 Journal of Sustainable Engineering Applications and Technological Developments Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli %A Adil ÖZDEMİR %T Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli %D 2018 %J Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi %P 2651-3544- %V 1 %N 2 %R %U
ISNAD ÖZDEMİR, Adil . "Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli". Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi 1 / 2 (December 2018): 103-150.
AMA ÖZDEMİR A . Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli. SMUTGD. 2018; 1(2): 103-150.
Vancouver ÖZDEMİR A . Türkiye’nin İyotça Zengin Suları ve Kara Alanlarının Petrol ve Doğalgaz Potansiyeli. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi. 2018; 1(2): 150-103.