Derleme
BibTex RIS Kaynak Göster
Yıl 2020, The 100 Year of Polymers, 395 - 405, 01.11.2020
https://doi.org/10.15671/hjbc.813565

Öz

Kaynakça

  • 1. T. Masuda, A. M. Akimoto, K. Nagase, T. Okano, R. Yoshida, Artifical cilia as autonomous nanoactuators: Desing of a gradient self-oscillating polymer brush with controlled unidirectional motion. Science Adv. 2 (2016), 1-7.
  • 2. K. A. Montey-Villages, A. Ramirez-Jimenez, A. Zizumbo-Lopez, S. Perez-Sicairos, B. Leal-Acevedo, E. Bucio, A. Licea-Claverie. Controlled surface modification of silicon rubber by gamma-irradiation followed by RAFT grafting polymerization. J. European Polym 134 (2020), 109817.
  • 3. M. Li, C. W. Pester. Mixed polymer brushes for “smart” surfaces. Polymers 12 (2020), 1553.
  • 4. M. Bonnevide, T. N. T. Phan, N. Malicki, S. K. Kumar, M. Couty, D. Gigmes, J. Jestin. Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization, Polymer 190 (2020), 122190.
  • 5. M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J. E. Gautrot. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 114 (2014), 10976-11026.
  • 6. K. B Buhl, A. H. Agergaard, M. Lillethorup, J. P. Nikolajsen, S. U. Pedersen. K. Daasbjerg. Polymer brush coating and adhesion technology at scale. Polymers 12 (2020), 1475.
  • 7. W. Sun, W. Liu, Z. Wu, H. Chen. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 41 (2020), 1900430.
  • 8. A. R. Kuzmyn, A. T. Nguyen, L. W. Teunissen, H. Zuilhof, J. Baggerman. Antifouling polymer brushes via oxygen-tolerant surface-initiated PET-RAFT. Langmuir 36 (2020), 4439-4446.
  • 9. S. T Milner. Polymer brushes. Science 251 (1991), 905-914.
  • 10. S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewki. Clyndrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 33 (2008), 759-785.
  • 11. C. M. Hui, J. Pietrasik, M. Schmitt, C. Mahoney, J. Choi, M. R. Bockstaller, K. Matyjaszewki. Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials. Chem. Mater. 26 (2014), 745-762.
  • 12. X. Huang, M. J. Wirth. Surface-initiated radical polymerization on porous silica. Anal. Chem. 69 (1997), 4577-4580.
  • 13. A. K. Nanda, K. Matyjaszewki. Effect of [bby]/[Cu (I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization. Macromolecules 36 (2003), 599-604.
  • 14. D. M. Jones, W. T. S. Huck. Controlled surface-initiated polymerizations in aqueous media. Adv. Matter. 13 (2001), 1256-1259.
  • 15. L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird, C. K. Ober. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir 21 (2005), 2495-2504.
  • 16. R. Matsuno, K. Yamamoto, H. Otsuka, A. Takahara. Polystyrene-and poly(3-vinylpridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37 (2004), 2203-2209.
  • 17. O. Guselnikova, S. R. A. Marque, E. Tretyakov, D. Mares, V. Jerabek, G. Audran, J.-P. Joly, M. Trusova, V. Svorcik, O. Lyutakov, et al. Unprecedented Plasmon-Induced Nitroxide-Mediated Polymerization (PI-NMP): A Method for Preparation of Functional Surfaces. J. Mat. Chem. A 7 (2019) , 12414–12419.
  • 18. V. Ladmiral, T. Morinaga, K. Ohno, T. Fukuda, Y. Tsujii . Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. Eur. Polym. J. 45 (2009), 2788–2796.
  • 19. J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes, H.-A. Klok. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 117 (2017), 1105-1318.
  • 20. H. J. Lee, Y. Nakayama, T. Matsuda. Spatio-resolved, macromolecular architectural surface: Highly branched graft polymer via photochemically driven quasiliving polymerization technique. Macromolecules 32 (1999), 6989-6995.
  • 21. S. Kidoaki, Y. Nakayama, T. Matsuda. Measurement of interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in an aqueous media. Langmuir 17 (2001), 1080-1087.
  • 22. T. Matsuda, M. Kaneko, S. Ge. Quais-living surface graft polymerization with phosphorylcholine group(s) at the terminal end. Biomacromolecules 24 (2003), 4507-4515.
  • 23. W. H. Yu, E. T. Kang, K. G. Neoh. Functionalization of hydrogen-terminated Si (100) substrate by surface-initiated RAFT polymerization of 4-vinylbenzyl chloride and subsequent derivatization for photoinduced metallization. Ind. Eng. Chem. Res. 43 (2004), 5194-5202.
  • 24. A. Pourjavadi, M. Kohestanian, C. Streb. pH and thermal dual-responsive poly(NIPAM-co-CMA) coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivey.Mat. Sci.& Eng. C 108 (2020), 110418.
  • 25. S. Demirci, A. Celebioglu, T. Uyar. Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbonhydrate Polym. 113 (2014), 200-207.
  • 26. I. Luzinov, D. Julthongpiput, H. Malz, V. V. Pionteck, Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules 33 (2000), 1043-1048.
  • 27. W. J. Brittain, S. Minko. J. A structural definition of polymer brushes.Polym. Sci. Part A: Polym. Chem. 45(16) (2007), 3505-3512.
  • 28. S. Yamamoto, M. Ejaz, Y. Tsujii, T. Fukuda. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy.2. Effect of grafting density. Macromolecules 33 (2000), 5608-5612.
  • 29. W. P. Liao, I. G. Elliott, R. Faller, T. L. Kuhl. Normal and shear interactions between high grafting density polymer brushes grown by atom transfer radical polymerization. Soft Matter 9 (2013), 5753-5761.
  • 30. T. E. Pattern, K. Matyjaszewki. Copper(I)-catalyzed atom transfer radical polymerization. Acc. Chem. Res. 32(10) (1999), 895-903.
  • 31. E. Turan, S. Demirci, T. Caykara, Synthesis of thermoresponsive poly(N-isopropyl acrylamide) brushes on silicon wafer surface via atom transfer radical polymerization. Thin Solid Films 518 (2010), 5950-5954.
  • 32. M. Husseman, E. E. Malmström, M. McNamara, M. Mate, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, C.J. Hawker. Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques. Macromolecules 32 (5) (1999) 1424-1431.
  • 33. A. C. Schmit, H. Turgut, D. Le, A. Beloqui, G. Delaittre. Making the Best of It: Nitroxide-Mediated Polymerization of Methacrylates via the Copolymerization Approach with Functional Styrenics. Polym. Chem. 11 (2020), 593–604.
  • 34. M. Ignatova, S. Voccia, B. Gilbert, N. Markova, P. S. Mercuri, M. Galleni, V. Sciannamea, S. Lenoir, D. Cossement, R. Gouttebaron, R. Jérôme, C. Jérôme. Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir 20 (2004), 10718-10726.
  • 35. M. Joubert, A. Khoukh, J-F. Tranchant, F. Morvan, L. Billon. Hybrid Aluminum Colored Pigments BAsed on Gradient Copolymers Design. Macromol. Chem. Phys. 210 (2009), 1544–1555.
  • 36. L. Ghannam, M. Bacou, H. Garay, J. Francois, M. E. R. Shanahan, L. Billon. Elastomer Monolayers Adsorbed on Mica Surfaces by Nitroxide-Mediated Polymerization. Polymer 45 (2004) 7035-7045.
  • 37. C. Konn, F. Morel, E. Beyou, P. Chaumont, E. Bourgeat-Lami. Nitroxide-mediated Polymerization of Styrene Initiated from the Surface of Laponite Clay Platelets. Macromolecules 40 (2007), 7464-7472. 38. J. Li, X. Chen, Y-C. Chang. Preparation of End-Grafted Polymer Brushes by Nitroxide-Mediated Free Radical Polymerization of VAporized Vinyl Monomers, Langmuir 21 (2005), 9562-9567.
  • 39. D. Cimen, T Çaykara. Preparation of oligo-N-isopropylacrylamide brushes with –OH and -COOH end-groups via surface initiated NMP, J. Appl. Polym. Sci. 129 (2013), 383-390.
  • 40. O. Garcia-Valdez, R. Ledezma-Rodriguez, E. Sadivar-Guerra, L. Yate, S. Moya, R. F. Ziolo. Graphene Oxide Modification with Graft Polymers via Nitroxide Mediated Radical Polymerization, Polymer 55 (2014), 2347-2355.
  • 41.P. Lambrinos, M. Tardi, A. Polton, P. Sigwalt. The mechanism of the polymerization of n.butyl acrylate initiated with N,N-diethyl dithiocarbamate derivatives. Eur. Polym. J. 26 (1990), 1125-1135.
  • 42. J. C. Tom, R. Brilmayer, J. Schidt, A.Andrieu-Brunsen. Optimization of surface-initiated photoiniferter-mediated polymerization under confinement, and the formation of block copolymers in mesoporous films. Polymers 9 (2017), 539-560.
  • 43. Y. Nakayama, T. Matsuda. Surface macromolecular architectural design using photo-graft copolymerization based on photochemistry of benzyl N, N-diethyldithiocarbamate. Macromolecules 29 (1999), 8622-8630.
  • 44. J. Higashi, Y. Nakayama, R. E. Marchant, T. Matsuda. High-spatioresolved microarchitectural surface prepared by photograft copolymerization using dithiocarbamate: Surface preparation and cellular responses. Langmuir 15(6) (1999) 2080-2088.
  • 45. E. M. Benetti, E. Reimhult, J. de Bruin, S. Zapotoczny, M. Textor, G. J. Vancso. Poly(methacrylic acid) grafts grown from designer surfaces: The effect of initiator coverage on polymerization kinetics, morphology and properties. Macromolecules 42 (2009), 1640-1647. 46. E. M. Benetti, S. Zapotoczny, G. J. Vancso. Tunable thermoresponsive polymerica platforms on gold by “Photoiniferter”-Based surface grafting. Adv. Mater. 19 (2007), 268-271.
  • 47. J. MA, S. Luan, L. Song, J. Jin, S. Yuan, S. Yan, H. Yang, H. Shi, J. Yin. Fabricating a cycloolefin polymer immunoassay platform with a dual-function polymer brush via a surface-initiated photoiniferter-mediated polymerization strategy. ACS Appl. Mater. Interfaces 6 (2014), 1971-1978.
  • 48. B. Zhao, W. J. Brittain. Polymer brushes:Surface-immobilized macromolecules. Prog. Polym. Sci. 25 (2003) 667-710.
  • 49. K. Kato, E. Uchida, E. T. Kang, Y. Uyama, Y. Ikada. Polymer surface with graft chains Prog. Polym. Sci.28 (2003) 209-259.
  • 50. S. Demirci, S. K. Demirci, T. Caykara. A new selenium-based RAFT agent for surface-initiated RAFT polymerization of 4-vinylpyridine. Polymer 54 (2013) 5345-5350.

Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques

Yıl 2020, The 100 Year of Polymers, 395 - 405, 01.11.2020
https://doi.org/10.15671/hjbc.813565

Öz

The surface modifications are necessary to alter the inherent surface physical/chemical properties of materials in terms of adhesion, wettability, friction, biocompatibility etc. for using in textile, electronic and biomedical industries. Surface modifications are usually made by grafting of polymer brushes to the solid substrates. The grafting process allows controlling and manipulation of surface properties without changing the chemical structure of polymers. Besides their chemical structures, grafting density of polymer brushes and average distance between the polymer chains attached to the surface are also important parameters, affecting the intended use of the grafted materials. Synthesis of functional polymer brushes is generally carried out by one of surface-initiated controlled/living free radical polymerization techniques, namely Atom Transfer Radical Polymerization (ATRP), Nitroxide-Mediated Polymerization (NMP), Photoiniferter-Mediated Polymerization (PIMP) and Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT). This review reports the strategies of these techniques for generating polymer brushes and summarizes the application of polymer brushes in multiple fields.

Kaynakça

  • 1. T. Masuda, A. M. Akimoto, K. Nagase, T. Okano, R. Yoshida, Artifical cilia as autonomous nanoactuators: Desing of a gradient self-oscillating polymer brush with controlled unidirectional motion. Science Adv. 2 (2016), 1-7.
  • 2. K. A. Montey-Villages, A. Ramirez-Jimenez, A. Zizumbo-Lopez, S. Perez-Sicairos, B. Leal-Acevedo, E. Bucio, A. Licea-Claverie. Controlled surface modification of silicon rubber by gamma-irradiation followed by RAFT grafting polymerization. J. European Polym 134 (2020), 109817.
  • 3. M. Li, C. W. Pester. Mixed polymer brushes for “smart” surfaces. Polymers 12 (2020), 1553.
  • 4. M. Bonnevide, T. N. T. Phan, N. Malicki, S. K. Kumar, M. Couty, D. Gigmes, J. Jestin. Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization, Polymer 190 (2020), 122190.
  • 5. M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J. E. Gautrot. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 114 (2014), 10976-11026.
  • 6. K. B Buhl, A. H. Agergaard, M. Lillethorup, J. P. Nikolajsen, S. U. Pedersen. K. Daasbjerg. Polymer brush coating and adhesion technology at scale. Polymers 12 (2020), 1475.
  • 7. W. Sun, W. Liu, Z. Wu, H. Chen. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 41 (2020), 1900430.
  • 8. A. R. Kuzmyn, A. T. Nguyen, L. W. Teunissen, H. Zuilhof, J. Baggerman. Antifouling polymer brushes via oxygen-tolerant surface-initiated PET-RAFT. Langmuir 36 (2020), 4439-4446.
  • 9. S. T Milner. Polymer brushes. Science 251 (1991), 905-914.
  • 10. S. S. Sheiko, B. S. Sumerlin, K. Matyjaszewki. Clyndrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci. 33 (2008), 759-785.
  • 11. C. M. Hui, J. Pietrasik, M. Schmitt, C. Mahoney, J. Choi, M. R. Bockstaller, K. Matyjaszewki. Surface-initiated polymerization as an enabling tool for multifunctional (nano-) engineered hybrid materials. Chem. Mater. 26 (2014), 745-762.
  • 12. X. Huang, M. J. Wirth. Surface-initiated radical polymerization on porous silica. Anal. Chem. 69 (1997), 4577-4580.
  • 13. A. K. Nanda, K. Matyjaszewki. Effect of [bby]/[Cu (I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization. Macromolecules 36 (2003), 599-604.
  • 14. D. M. Jones, W. T. S. Huck. Controlled surface-initiated polymerizations in aqueous media. Adv. Matter. 13 (2001), 1256-1259.
  • 15. L. Andruzzi, W. Senaratne, A. Hexemer, E. D. Sheets, B. Ilic, E. J. Kramer, B. Baird, C. K. Ober. Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir 21 (2005), 2495-2504.
  • 16. R. Matsuno, K. Yamamoto, H. Otsuka, A. Takahara. Polystyrene-and poly(3-vinylpridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules 37 (2004), 2203-2209.
  • 17. O. Guselnikova, S. R. A. Marque, E. Tretyakov, D. Mares, V. Jerabek, G. Audran, J.-P. Joly, M. Trusova, V. Svorcik, O. Lyutakov, et al. Unprecedented Plasmon-Induced Nitroxide-Mediated Polymerization (PI-NMP): A Method for Preparation of Functional Surfaces. J. Mat. Chem. A 7 (2019) , 12414–12419.
  • 18. V. Ladmiral, T. Morinaga, K. Ohno, T. Fukuda, Y. Tsujii . Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. Eur. Polym. J. 45 (2009), 2788–2796.
  • 19. J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes, H.-A. Klok. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 117 (2017), 1105-1318.
  • 20. H. J. Lee, Y. Nakayama, T. Matsuda. Spatio-resolved, macromolecular architectural surface: Highly branched graft polymer via photochemically driven quasiliving polymerization technique. Macromolecules 32 (1999), 6989-6995.
  • 21. S. Kidoaki, Y. Nakayama, T. Matsuda. Measurement of interaction forces between proteins and iniferter-based graft-polymerized surfaces with an atomic force microscope in an aqueous media. Langmuir 17 (2001), 1080-1087.
  • 22. T. Matsuda, M. Kaneko, S. Ge. Quais-living surface graft polymerization with phosphorylcholine group(s) at the terminal end. Biomacromolecules 24 (2003), 4507-4515.
  • 23. W. H. Yu, E. T. Kang, K. G. Neoh. Functionalization of hydrogen-terminated Si (100) substrate by surface-initiated RAFT polymerization of 4-vinylbenzyl chloride and subsequent derivatization for photoinduced metallization. Ind. Eng. Chem. Res. 43 (2004), 5194-5202.
  • 24. A. Pourjavadi, M. Kohestanian, C. Streb. pH and thermal dual-responsive poly(NIPAM-co-CMA) coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivey.Mat. Sci.& Eng. C 108 (2020), 110418.
  • 25. S. Demirci, A. Celebioglu, T. Uyar. Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbonhydrate Polym. 113 (2014), 200-207.
  • 26. I. Luzinov, D. Julthongpiput, H. Malz, V. V. Pionteck, Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules 33 (2000), 1043-1048.
  • 27. W. J. Brittain, S. Minko. J. A structural definition of polymer brushes.Polym. Sci. Part A: Polym. Chem. 45(16) (2007), 3505-3512.
  • 28. S. Yamamoto, M. Ejaz, Y. Tsujii, T. Fukuda. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy.2. Effect of grafting density. Macromolecules 33 (2000), 5608-5612.
  • 29. W. P. Liao, I. G. Elliott, R. Faller, T. L. Kuhl. Normal and shear interactions between high grafting density polymer brushes grown by atom transfer radical polymerization. Soft Matter 9 (2013), 5753-5761.
  • 30. T. E. Pattern, K. Matyjaszewki. Copper(I)-catalyzed atom transfer radical polymerization. Acc. Chem. Res. 32(10) (1999), 895-903.
  • 31. E. Turan, S. Demirci, T. Caykara, Synthesis of thermoresponsive poly(N-isopropyl acrylamide) brushes on silicon wafer surface via atom transfer radical polymerization. Thin Solid Films 518 (2010), 5950-5954.
  • 32. M. Husseman, E. E. Malmström, M. McNamara, M. Mate, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, C.J. Hawker. Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques. Macromolecules 32 (5) (1999) 1424-1431.
  • 33. A. C. Schmit, H. Turgut, D. Le, A. Beloqui, G. Delaittre. Making the Best of It: Nitroxide-Mediated Polymerization of Methacrylates via the Copolymerization Approach with Functional Styrenics. Polym. Chem. 11 (2020), 593–604.
  • 34. M. Ignatova, S. Voccia, B. Gilbert, N. Markova, P. S. Mercuri, M. Galleni, V. Sciannamea, S. Lenoir, D. Cossement, R. Gouttebaron, R. Jérôme, C. Jérôme. Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir 20 (2004), 10718-10726.
  • 35. M. Joubert, A. Khoukh, J-F. Tranchant, F. Morvan, L. Billon. Hybrid Aluminum Colored Pigments BAsed on Gradient Copolymers Design. Macromol. Chem. Phys. 210 (2009), 1544–1555.
  • 36. L. Ghannam, M. Bacou, H. Garay, J. Francois, M. E. R. Shanahan, L. Billon. Elastomer Monolayers Adsorbed on Mica Surfaces by Nitroxide-Mediated Polymerization. Polymer 45 (2004) 7035-7045.
  • 37. C. Konn, F. Morel, E. Beyou, P. Chaumont, E. Bourgeat-Lami. Nitroxide-mediated Polymerization of Styrene Initiated from the Surface of Laponite Clay Platelets. Macromolecules 40 (2007), 7464-7472. 38. J. Li, X. Chen, Y-C. Chang. Preparation of End-Grafted Polymer Brushes by Nitroxide-Mediated Free Radical Polymerization of VAporized Vinyl Monomers, Langmuir 21 (2005), 9562-9567.
  • 39. D. Cimen, T Çaykara. Preparation of oligo-N-isopropylacrylamide brushes with –OH and -COOH end-groups via surface initiated NMP, J. Appl. Polym. Sci. 129 (2013), 383-390.
  • 40. O. Garcia-Valdez, R. Ledezma-Rodriguez, E. Sadivar-Guerra, L. Yate, S. Moya, R. F. Ziolo. Graphene Oxide Modification with Graft Polymers via Nitroxide Mediated Radical Polymerization, Polymer 55 (2014), 2347-2355.
  • 41.P. Lambrinos, M. Tardi, A. Polton, P. Sigwalt. The mechanism of the polymerization of n.butyl acrylate initiated with N,N-diethyl dithiocarbamate derivatives. Eur. Polym. J. 26 (1990), 1125-1135.
  • 42. J. C. Tom, R. Brilmayer, J. Schidt, A.Andrieu-Brunsen. Optimization of surface-initiated photoiniferter-mediated polymerization under confinement, and the formation of block copolymers in mesoporous films. Polymers 9 (2017), 539-560.
  • 43. Y. Nakayama, T. Matsuda. Surface macromolecular architectural design using photo-graft copolymerization based on photochemistry of benzyl N, N-diethyldithiocarbamate. Macromolecules 29 (1999), 8622-8630.
  • 44. J. Higashi, Y. Nakayama, R. E. Marchant, T. Matsuda. High-spatioresolved microarchitectural surface prepared by photograft copolymerization using dithiocarbamate: Surface preparation and cellular responses. Langmuir 15(6) (1999) 2080-2088.
  • 45. E. M. Benetti, E. Reimhult, J. de Bruin, S. Zapotoczny, M. Textor, G. J. Vancso. Poly(methacrylic acid) grafts grown from designer surfaces: The effect of initiator coverage on polymerization kinetics, morphology and properties. Macromolecules 42 (2009), 1640-1647. 46. E. M. Benetti, S. Zapotoczny, G. J. Vancso. Tunable thermoresponsive polymerica platforms on gold by “Photoiniferter”-Based surface grafting. Adv. Mater. 19 (2007), 268-271.
  • 47. J. MA, S. Luan, L. Song, J. Jin, S. Yuan, S. Yan, H. Yang, H. Shi, J. Yin. Fabricating a cycloolefin polymer immunoassay platform with a dual-function polymer brush via a surface-initiated photoiniferter-mediated polymerization strategy. ACS Appl. Mater. Interfaces 6 (2014), 1971-1978.
  • 48. B. Zhao, W. J. Brittain. Polymer brushes:Surface-immobilized macromolecules. Prog. Polym. Sci. 25 (2003) 667-710.
  • 49. K. Kato, E. Uchida, E. T. Kang, Y. Uyama, Y. Ikada. Polymer surface with graft chains Prog. Polym. Sci.28 (2003) 209-259.
  • 50. S. Demirci, S. K. Demirci, T. Caykara. A new selenium-based RAFT agent for surface-initiated RAFT polymerization of 4-vinylpyridine. Polymer 54 (2013) 5345-5350.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Kübra Hüküm Özkan Bu kişi benim 0000-0003-4520-1917

Esma Mutlutürk Bu kişi benim 0000-0002-1496-2206

Tugba Demir Çalışkan 0000-0003-2935-0525

Tuncer Çaykara 0000-0002-4882-8515

Yayımlanma Tarihi 1 Kasım 2020
Kabul Tarihi 21 Ekim 2020
Yayımlandığı Sayı Yıl 2020 The 100 Year of Polymers

Kaynak Göster

APA Hüküm Özkan, K., Mutlutürk, E., Demir Çalışkan, T., Çaykara, T. (2020). Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. Hacettepe Journal of Biology and Chemistry, 48(5), 395-405. https://doi.org/10.15671/hjbc.813565
AMA Hüküm Özkan K, Mutlutürk E, Demir Çalışkan T, Çaykara T. Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. HJBC. Kasım 2020;48(5):395-405. doi:10.15671/hjbc.813565
Chicago Hüküm Özkan, Kübra, Esma Mutlutürk, Tugba Demir Çalışkan, ve Tuncer Çaykara. “Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques”. Hacettepe Journal of Biology and Chemistry 48, sy. 5 (Kasım 2020): 395-405. https://doi.org/10.15671/hjbc.813565.
EndNote Hüküm Özkan K, Mutlutürk E, Demir Çalışkan T, Çaykara T (01 Kasım 2020) Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. Hacettepe Journal of Biology and Chemistry 48 5 395–405.
IEEE K. Hüküm Özkan, E. Mutlutürk, T. Demir Çalışkan, ve T. Çaykara, “Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques”, HJBC, c. 48, sy. 5, ss. 395–405, 2020, doi: 10.15671/hjbc.813565.
ISNAD Hüküm Özkan, Kübra vd. “Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques”. Hacettepe Journal of Biology and Chemistry 48/5 (Kasım 2020), 395-405. https://doi.org/10.15671/hjbc.813565.
JAMA Hüküm Özkan K, Mutlutürk E, Demir Çalışkan T, Çaykara T. Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. HJBC. 2020;48:395–405.
MLA Hüküm Özkan, Kübra vd. “Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques”. Hacettepe Journal of Biology and Chemistry, c. 48, sy. 5, 2020, ss. 395-0, doi:10.15671/hjbc.813565.
Vancouver Hüküm Özkan K, Mutlutürk E, Demir Çalışkan T, Çaykara T. Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. HJBC. 2020;48(5):395-40.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc