Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Different Welding Currents and Speeds on Microhardness of XAR 500 Series Steels in Robotic MAG Welding Method

Yıl 2020, Cilt: 8 Sayı: 1, 1193 - 1203, 31.01.2020
https://doi.org/10.29130/dubited.646727

Öz

In this study is to
investigate the effect of welding current on microhardness in combining XAR
(eXtra Wear Resistance) steels with robotic MAG welding method. In this study,
the effect of welding current intensity on microhardness in combining XAR 500
steel of 4 mm thickness used in heavy duty machine with MAG welding method was
investigated. In the preparation of welded samples, MAG welding robot with
speed, voltage and current control is used. Three different welding current
densities were selected as welding current intensity 140A, 160A and 180A.
Welding speed was kept constant at 350mm/min. In order to test the effect of
the welding speed, the welding current was kept constant at 160A and at speeds
of 300mm/min, 400mm/min and 450mm/min. MG-2 welding wire with 1mm thickness was
used. Mixed gas with 86% Ar, 12% CO2 and 2% O2 was used.
Microhardness obtained from welded joints were analyzed. As a results, it has
been observed decrease of HAZ hardness on welded joints of this material
groups. Therefore, was observed decrease of crack risk in HAZ of weldment
when   decreased HAZ hardness. The
welding current which providing the optimum hardness ratio in the obtained
welded joints was presented to the users.

Kaynakça

  • [1] S. Frydman, G. Pękalski, “Structure and hardness changes in welded joints of Hardox steels,” Archives of Civil and Mechanical Engineering, c. 8, s. 4, ss. 15-27, 2008.
  • [2] M. Oskwarek, “Structural features and susceptibility to cracking of welded joints of Hardox 400 and Hardox 500 steels,” presented at the IV Scientific Conference of Students, Wroclaw University of Technology Publishing House, Wrocaw, Polland, 2006, ss. 115-120.
  • [3] H. Buglacki, M. Smajdor, “Mechanical properties of abrasion –resistant Hardox 400,” Advances in Material Science, c. 4, s. 2, 64-71, 2003.
  • [4] P. Mithilesh, D. Varun, R. Ajay Gopi, K. Reddy, D. Ramkumar, N. Arivazhagan, S. Narayanan, “Investigations on dissimilar weldments of inconel 625 and AISI 304,” Procedia Engineering, c. 75, ss. 66–70, 2014.
  • [5] Z. Li, G. Fontana, “Autogeneous laser welding of stainless steelto free-cutting steel for the manufacture of hydraulic valves,” J. Mater. Process. Technol, c. 74, s. 1-3, ss. 174, 1998.
  • [6] M. Finsgar, L. Milosev, “Corrosion behavior of stainless steels in aqueous solutions of methanesulfonic acid,” Corros. Sci., c. 52, s. 7, ss. 2430–2438, 2010.
  • [7] S.V. Konovalov, V.E. Kormyshev, V.E. Gromov, “Formation Wear Resistant Costings on Martensite Steel Hardox 450 by Welding Methods,” IOP Conf. Ser.: Mater. Sci. Eng. 142, 012079, 2016, DOI: https://doi:10.1088/1757-899X/142/1/012079
  • [8] L. Konat, B. Bialobrzeska, P. Bialek, “Effect of Welding Process on Microstructural and Mechanical Characteristics of Hardox 600 Steel,” c. 7, s. 9, ss. 1-18, DOI: https://doi:10.3390/met7090349
  • [9] Y. F. Ivanov, S.V. Konovalov, V. E. Kormyshev, V. E. Gromov, “Structure and Properties of Hardox 450 Steel with Arc Welded Coating,” (020073), ss. 1-4, 1 DOI: https://doi.org/10.1063/1.5013754
  • [10] A. Uluköy, “Pulsed Metall Inert Gas (MIG) Welding And Its Effects On The Microstructure And Element Distribution Of An Aluminum Matrix Reinforced With Sic Composite Material,” c. 48, s. 2, 163-176, DOI: https://doi.org/10.1002/mawe.201700568
  • [11] H. Ada, S. Aksöz, T. Fındık, C. Çetinkaya, B. Bostan, İ. Candan,“The Investigation of Effect of Welding Process on The Microstructure and Mechanical Properties of API 5L X65 Steel Welded with Gas Metal Arc Welding Method,” Çukurova University Journal of the Faculty of Engineering and Architecture, 31(ÖS 1), ss.1-9, 2016.
  • [12] M. Ekici, U. Ozsaraç, “Investigation of Mechanical Properties of Microalloyed Steels Joined by GMAW and Electrical Arc Welding,” ACTA PHYSICA POLONICA A, c. 123, s. 2, ss. 289-290, DOI: https://doi.org/10.12693/APhysPolA.123.289
  • [13] M. Ekici, U. Ozsarac,“Influence of Martensite Volume Fraction on Ductile to Brittle Transition of Triple Phase Ferrite-Perlite-Martensite Steels Joined by GMAW and Electrical Arc Welding,” ACTA PHYSICA POLONICA A, c. 125, s. 2, ss. 529-531, DOI: https://doi.org/10.12693/APhysPolA.125.529
  • [14] P.J. Modenesi, R.C. Avelar, “The Influence Of Small Variations of Wire Characteristics on Gas Metal Arc Welding Process Stability,” Journal of Materials Processing Technology, c. 86, s. 1–3, ss. 226-232, DOI: https://doi.org/10.1016/S0924-0136(98)00315-X
  • [15] M.G. Çınar, V. Onar, H. Efe, “ Microstructure Analysis of XAR Steel Plate Welded by MAG Weldıng Method Using Different Welding Currents,” International Journal on Mathematic,Engineering and Natural Science”, c. 3, s.7, ss. 22-29, 2019.
  • [16] H. Efe, V. Onar, M.G. Çınar, “ The Effect of Welding Currents on Microstructures in Welding of S690QL Series Steel in Used Heavy Duty Machines,” International Journal on Mathematic,Engineering and Natural Science”, c. 3, s. 8, ss. 123-130, 2019.
  • [17] A.K. Gür, T. Yıldız, U. Çalıgüllü, Ç. Özay, “AISI 304/HARDOX 400 Çelik Çiftlerinin PTA Kaynak Yöntemiyle Birleştirilmesinde Kaynak Gücünün Etkisi,” IMSMATEC18, İzmir, Türkiye, 2018, ss. 250-256.
  • [18] G. G. Corea, R. F. Silva,, L. C. Silva, “Weldabilitiy of Abrasion-Resistant Steels of 450 HB Hardness,” Soldag. Insp., c.16, s. 4, ss. 360-368, 2011.
  • [19] C. T. Tevfik, “Weldable of HARDOX 450 Steel with Submerged Welding Method,” ICETAS, Afyon, Türkiye, 2016, ss. 590-593.
  • [20] L. Konat, B. Bialobreska, P. Bialek, “Effect of Welding Process on Microstructural an Mechanical Charestersitics of Hardox 600 Steel,” Metals, c. 7, s. 9, ss. 349-366, 2017.
  • [21] M. Bramowizc, S. Kulesza, P. Lewalski, P. Szatkowski, “Structural Studies of Welds in Wear-Resistant Steels,” ACTA PHYSICA POLONICA A, C.130, S.4, ss. 963-965, 2016.

Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi

Yıl 2020, Cilt: 8 Sayı: 1, 1193 - 1203, 31.01.2020
https://doi.org/10.29130/dubited.646727

Öz

Bu çalışmada, XAR (eXtra Aşınma
Dayanımı) çeliklerinin robotik MAG kaynağında kaynak akımının kaynaklı
birleştirmelerin mikrosertliği üzerine etkisi incelenmiştir. Bu çalışmada, ağır
hizmet makinelerinde kullanılan 4 mm kalınlıktaki XAR 500 çeliğinin MAG kaynak
yöntemiyle birleştirilmesinde kaynak akımı yoğunluğunun mikrosertliğe etkisi
incelenmiştir. Kaynaklanmış numunelerin hazırlanmasında hız, gerilim ve akım
kontrollü MAG kynak robotu kullanılmıştır. 140A, 160A ve 180A olmak üzere üç
farklı kaynak akım yoğunluğu seçilmiştir. Kaynak hızı 350mm/dak olarak sabit
tutulmuştur. Kaynak hızının etkisini test etmek için 300mm/dak, 350mm/dak, 400mm/dak
ve 450 mm/dak. olarak seçilmiş kaynak akım şiddeti 160A’ de sabit tutulmuştur.
1 mm kalınlığında MG-2 kaynak teli kullanılmıştır. %86 Ar, %12 CO2
ve %2 O2 içeren karışım gaz kullanılmıştır. Sonuç olarak, bu malzeme
gruplarının kaynaklı bağlantılarında ısı tesiri altındaki bölge (ITAB)
sertliğinin azaldığı gözlenmiştir. Bu nedenle ITAB sertliğinin azalması
durumunda çatlak riskinin azaldığı gözlenmiştir. Elde edilen kaynaklı
bağlantılarda optimum sertlik oranını sağlayan kaynak akımı ve kaynak hızı
kullanıcılara sunulmuştur.

Kaynakça

  • [1] S. Frydman, G. Pękalski, “Structure and hardness changes in welded joints of Hardox steels,” Archives of Civil and Mechanical Engineering, c. 8, s. 4, ss. 15-27, 2008.
  • [2] M. Oskwarek, “Structural features and susceptibility to cracking of welded joints of Hardox 400 and Hardox 500 steels,” presented at the IV Scientific Conference of Students, Wroclaw University of Technology Publishing House, Wrocaw, Polland, 2006, ss. 115-120.
  • [3] H. Buglacki, M. Smajdor, “Mechanical properties of abrasion –resistant Hardox 400,” Advances in Material Science, c. 4, s. 2, 64-71, 2003.
  • [4] P. Mithilesh, D. Varun, R. Ajay Gopi, K. Reddy, D. Ramkumar, N. Arivazhagan, S. Narayanan, “Investigations on dissimilar weldments of inconel 625 and AISI 304,” Procedia Engineering, c. 75, ss. 66–70, 2014.
  • [5] Z. Li, G. Fontana, “Autogeneous laser welding of stainless steelto free-cutting steel for the manufacture of hydraulic valves,” J. Mater. Process. Technol, c. 74, s. 1-3, ss. 174, 1998.
  • [6] M. Finsgar, L. Milosev, “Corrosion behavior of stainless steels in aqueous solutions of methanesulfonic acid,” Corros. Sci., c. 52, s. 7, ss. 2430–2438, 2010.
  • [7] S.V. Konovalov, V.E. Kormyshev, V.E. Gromov, “Formation Wear Resistant Costings on Martensite Steel Hardox 450 by Welding Methods,” IOP Conf. Ser.: Mater. Sci. Eng. 142, 012079, 2016, DOI: https://doi:10.1088/1757-899X/142/1/012079
  • [8] L. Konat, B. Bialobrzeska, P. Bialek, “Effect of Welding Process on Microstructural and Mechanical Characteristics of Hardox 600 Steel,” c. 7, s. 9, ss. 1-18, DOI: https://doi:10.3390/met7090349
  • [9] Y. F. Ivanov, S.V. Konovalov, V. E. Kormyshev, V. E. Gromov, “Structure and Properties of Hardox 450 Steel with Arc Welded Coating,” (020073), ss. 1-4, 1 DOI: https://doi.org/10.1063/1.5013754
  • [10] A. Uluköy, “Pulsed Metall Inert Gas (MIG) Welding And Its Effects On The Microstructure And Element Distribution Of An Aluminum Matrix Reinforced With Sic Composite Material,” c. 48, s. 2, 163-176, DOI: https://doi.org/10.1002/mawe.201700568
  • [11] H. Ada, S. Aksöz, T. Fındık, C. Çetinkaya, B. Bostan, İ. Candan,“The Investigation of Effect of Welding Process on The Microstructure and Mechanical Properties of API 5L X65 Steel Welded with Gas Metal Arc Welding Method,” Çukurova University Journal of the Faculty of Engineering and Architecture, 31(ÖS 1), ss.1-9, 2016.
  • [12] M. Ekici, U. Ozsaraç, “Investigation of Mechanical Properties of Microalloyed Steels Joined by GMAW and Electrical Arc Welding,” ACTA PHYSICA POLONICA A, c. 123, s. 2, ss. 289-290, DOI: https://doi.org/10.12693/APhysPolA.123.289
  • [13] M. Ekici, U. Ozsarac,“Influence of Martensite Volume Fraction on Ductile to Brittle Transition of Triple Phase Ferrite-Perlite-Martensite Steels Joined by GMAW and Electrical Arc Welding,” ACTA PHYSICA POLONICA A, c. 125, s. 2, ss. 529-531, DOI: https://doi.org/10.12693/APhysPolA.125.529
  • [14] P.J. Modenesi, R.C. Avelar, “The Influence Of Small Variations of Wire Characteristics on Gas Metal Arc Welding Process Stability,” Journal of Materials Processing Technology, c. 86, s. 1–3, ss. 226-232, DOI: https://doi.org/10.1016/S0924-0136(98)00315-X
  • [15] M.G. Çınar, V. Onar, H. Efe, “ Microstructure Analysis of XAR Steel Plate Welded by MAG Weldıng Method Using Different Welding Currents,” International Journal on Mathematic,Engineering and Natural Science”, c. 3, s.7, ss. 22-29, 2019.
  • [16] H. Efe, V. Onar, M.G. Çınar, “ The Effect of Welding Currents on Microstructures in Welding of S690QL Series Steel in Used Heavy Duty Machines,” International Journal on Mathematic,Engineering and Natural Science”, c. 3, s. 8, ss. 123-130, 2019.
  • [17] A.K. Gür, T. Yıldız, U. Çalıgüllü, Ç. Özay, “AISI 304/HARDOX 400 Çelik Çiftlerinin PTA Kaynak Yöntemiyle Birleştirilmesinde Kaynak Gücünün Etkisi,” IMSMATEC18, İzmir, Türkiye, 2018, ss. 250-256.
  • [18] G. G. Corea, R. F. Silva,, L. C. Silva, “Weldabilitiy of Abrasion-Resistant Steels of 450 HB Hardness,” Soldag. Insp., c.16, s. 4, ss. 360-368, 2011.
  • [19] C. T. Tevfik, “Weldable of HARDOX 450 Steel with Submerged Welding Method,” ICETAS, Afyon, Türkiye, 2016, ss. 590-593.
  • [20] L. Konat, B. Bialobreska, P. Bialek, “Effect of Welding Process on Microstructural an Mechanical Charestersitics of Hardox 600 Steel,” Metals, c. 7, s. 9, ss. 349-366, 2017.
  • [21] M. Bramowizc, S. Kulesza, P. Lewalski, P. Szatkowski, “Structural Studies of Welds in Wear-Resistant Steels,” ACTA PHYSICA POLONICA A, C.130, S.4, ss. 963-965, 2016.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Volkan Onar 0000-0001-6585-198X

Yayımlanma Tarihi 31 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 1

Kaynak Göster

APA Onar, V. (2020). Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi. Duzce University Journal of Science and Technology, 8(1), 1193-1203. https://doi.org/10.29130/dubited.646727
AMA Onar V. Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi. DÜBİTED. Ocak 2020;8(1):1193-1203. doi:10.29130/dubited.646727
Chicago Onar, Volkan. “Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının Ve Hızlarının Etkisi”. Duzce University Journal of Science and Technology 8, sy. 1 (Ocak 2020): 1193-1203. https://doi.org/10.29130/dubited.646727.
EndNote Onar V (01 Ocak 2020) Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi. Duzce University Journal of Science and Technology 8 1 1193–1203.
IEEE V. Onar, “Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi”, DÜBİTED, c. 8, sy. 1, ss. 1193–1203, 2020, doi: 10.29130/dubited.646727.
ISNAD Onar, Volkan. “Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının Ve Hızlarının Etkisi”. Duzce University Journal of Science and Technology 8/1 (Ocak 2020), 1193-1203. https://doi.org/10.29130/dubited.646727.
JAMA Onar V. Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi. DÜBİTED. 2020;8:1193–1203.
MLA Onar, Volkan. “Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının Ve Hızlarının Etkisi”. Duzce University Journal of Science and Technology, c. 8, sy. 1, 2020, ss. 1193-0, doi:10.29130/dubited.646727.
Vancouver Onar V. Robotik MAG Kaynak Metodunda XAR 500 Serisi Çeliklerin Mikrosertliğine Farklı Kaynak Akımlarının ve Hızlarının Etkisi. DÜBİTED. 2020;8(1):1193-20.