Araştırma Makalesi
BibTex RIS Kaynak Göster

Phylogeny of Plant Growth-Promoting Actinobacteria Isolated from Legume Nodules in Turkey

Yıl 2020, Cilt: 30 Sayı: 3, 611 - 619, 30.09.2020
https://doi.org/10.29133/yyutbd.705227

Öz

Actinobacteria are a biotechnologically important group of microorganisms utilized for their high capacity to synthesize many bioactive substances as well as agriculturally important compounds. In the present study, a culture-dependant approach was employed to isolate actinobacteria from wild legume nodules and their plant growth-promoting activities for indole-3-acetic acid production, atmospheric nitrogen fixation and inorganic phosphate solubilisation was investigated. A molecular approach based on 16S rRNA gene sequence analysis was employed to identify the isolates. After pairwise sequence analysis, six isolates were identified as members of the genera Streptomyces and Micromonospora. All isolates could produce indole-3-acetic acid and utilize atmospheric nitrogen while only one isolate was able to solubilize inorganic phosphate. The isolated actinobacteria are considered to be promising candidates for biological fertilizers especially because of their ability to use atmospheric nitrogen and produce high level of indole-3-acetic acid.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol, 48(5), 542-547.
  • Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., et al. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80(1), 1-43.
  • Benito, P., Alonso-Vega, P., Aguado, C., Luján, R., Anzai, Y., Hirsch, A. M., & Trujillo, M. E. (2017). Monitoring the colonization and infection of legume nodules by Micromonospora in co-inoculation experiments with rhizobia. Sci Rep, 7(1), 1-12.
  • Biswas, K., Choudhury, J. D., Mahansaria, R., Saha, M., & Mukherjee, J. (2017). Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest. J Antibiot, 70(6), 747-753.
  • Coombs, J. T., & Franco, C. M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol, 69(9), 5603-5608.
  • Cruz, J. A., & Paterno, E. S. (2014). Isolation and screening of Actinomycetes for its growth promoting activities. Asia Life Sci-The Asian International Journal of Life Sciences, 23(2), 413-427.
  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
  • Gaur, A. C. (1990). Phosphate solubilizing micro-organisms as biofertilizer. Omega scientific publishers.
  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786
  • Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microb Biot, 29(10), 1821-1829.
  • Grover, M., Bodhankar, S., Maheswari, M., & Srinivasarao, C. (2016). Actinomycetes as mitigators of climate change and abiotic stress. In Plant Growth Promoting Actinobacteria (pp. 203-212). Springer, Singapore.
  • Gupta, N., Sahoo, D., & Basak, U. C. (2010). Evaluation of in vitro solubilization potential of phosphate solubilising Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res, 4(3), 136-142.
  • Jog, R., Nareshkumar, G., & Rajkumar, S. (2012). Plant growth promoting potential and soil enzyme production of the most abundant S treptomyces spp. from wheat rhizosphere. J Appl Microbiol, 113(5), 1154-1164.
  • Lehr, N. A., Schrey, S. D., Hampp, R., & Tarkka, M. T. (2008). Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177(4), 965-976.
  • Li, J., Wang, L., Ye, Z., Lu, L., & Li, Y. (2020). Streptomyces tibetensis sp. nov., an actinomycete isolated from the Tibetan Plateau. A Van Leeuw J Microb, 113(1), 33-41.
  • Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., Musa, Z., Liu, Y., Hedlund, B.P., & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. A Van Leeuw J Microb, 111(10), 1735-1748.
  • Martínez-Hidalgo, P., Galindo-Villardón, P., Trujillo, M. E., Igual, J. M., & Martínez-Molina, E. (2014). Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria. Sci Rep, 4(1), 1-11.
  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60
  • Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, Reddy T, Pati A, Ivanova NN, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk HP (2014) Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxon. Stand Genom Sci. 8(9):2
  • Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354
  • Qin, S., Li, J., Chen, H. H., Zhao, G. Z., Zhu, W. Y., Jiang, C. L., Xu, L.H., & Li, W. J. (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol, 75(19), 6176-6186.
  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313
  • Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland
  • Tang, X., Zhao, J., Li, K., Chen, Z., Sun, Y., & Gao, J. (2019). Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. Int J Syst Evol Micr, 69(8), 2202-2207.
  • Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J.F., & Morra, M. J. (2002). Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol, 68(5), 2161-2171.
  • Trujillo, M. E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P., & Martínez-Molina, E. (2010). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. The ISME journal, 4(10), 1265-1281.
  • Trujillo, M. E., Riesco, R., Benito, P., & Carro, L. (2015). Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol, 6, 1341.
  • Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M. H., et al. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. In Probiotics and plant health (pp. 41-70). Springer, Singapore.
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Micr, 67(5), 1613.

Türkiye’de Baklagil Nodüllerinden İzole Edilen Bitki Gelişimini Destekleyici Aktinobakterilerin Filogenisi

Yıl 2020, Cilt: 30 Sayı: 3, 611 - 619, 30.09.2020
https://doi.org/10.29133/yyutbd.705227

Öz

Aktinobakteriler, tarımsal önemi olan moleküllerin yanı sıra birçok biyoaktif metabolitin üretimindeki işlevlerinden dolayı yararlanılan, biyoteknolojik olarak önemli bir mikroorganizma grubudur. Bu çalışmada, yabani baklagil nodüllerinden kültüre dayalı bir yaklaşımla aktinobakteriler izole edilmiş ve indol-3-asetik asit üretimi, atmosferik azot fiksasyonu ve inorganik fosfatı çözebilme özellikleri açısından bitki gelişimini destekleyici aktiviteleri araştırılmıştır. İzolatları tanımlamak amacıyla 16S rRNA gen dizi analizine dayanan bir moleküler yaklaşım kullanılmıştır. İkili dizi analizleri sonrasında altı izolatın Streptomyces ve Micromonospora cinslerinin üyeleri olduğu tespit edilmiştir. Bütün izolatlar indol-3-asetik asit üretebilmiş ve atmosferik azotu kullanabilmiştir. Ancak sadece bir izolat inorganik fosfatı çözünür hale getirebilmiştir. İzole edilen bu aktinobakteriler, özellikle atmosferik azotu kullanabilmeleri ve indol-3-asetik asit üretebilmeleri nedeniyle umut verici biyolojik gübre adayları olarak değerlendirilmektedir.

Proje Numarası

-

Kaynakça

  • Ali, B., Sabri, A. N., Ljung, K., & Hasnain, S. (2009). Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol, 48(5), 542-547.
  • Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., et al. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 80(1), 1-43.
  • Benito, P., Alonso-Vega, P., Aguado, C., Luján, R., Anzai, Y., Hirsch, A. M., & Trujillo, M. E. (2017). Monitoring the colonization and infection of legume nodules by Micromonospora in co-inoculation experiments with rhizobia. Sci Rep, 7(1), 1-12.
  • Biswas, K., Choudhury, J. D., Mahansaria, R., Saha, M., & Mukherjee, J. (2017). Streptomyces euryhalinus sp. nov., a new actinomycete isolated from a mangrove forest. J Antibiot, 70(6), 747-753.
  • Coombs, J. T., & Franco, C. M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol, 69(9), 5603-5608.
  • Cruz, J. A., & Paterno, E. S. (2014). Isolation and screening of Actinomycetes for its growth promoting activities. Asia Life Sci-The Asian International Journal of Life Sciences, 23(2), 413-427.
  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
  • Gaur, A. C. (1990). Phosphate solubilizing micro-organisms as biofertilizer. Omega scientific publishers.
  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786
  • Goudjal, Y., Toumatia, O., Sabaou, N., Barakate, M., Mathieu, F., & Zitouni, A. (2013). Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microb Biot, 29(10), 1821-1829.
  • Grover, M., Bodhankar, S., Maheswari, M., & Srinivasarao, C. (2016). Actinomycetes as mitigators of climate change and abiotic stress. In Plant Growth Promoting Actinobacteria (pp. 203-212). Springer, Singapore.
  • Gupta, N., Sahoo, D., & Basak, U. C. (2010). Evaluation of in vitro solubilization potential of phosphate solubilising Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res, 4(3), 136-142.
  • Jog, R., Nareshkumar, G., & Rajkumar, S. (2012). Plant growth promoting potential and soil enzyme production of the most abundant S treptomyces spp. from wheat rhizosphere. J Appl Microbiol, 113(5), 1154-1164.
  • Lehr, N. A., Schrey, S. D., Hampp, R., & Tarkka, M. T. (2008). Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177(4), 965-976.
  • Li, J., Wang, L., Ye, Z., Lu, L., & Li, Y. (2020). Streptomyces tibetensis sp. nov., an actinomycete isolated from the Tibetan Plateau. A Van Leeuw J Microb, 113(1), 33-41.
  • Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., Musa, Z., Liu, Y., Hedlund, B.P., & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. A Van Leeuw J Microb, 111(10), 1735-1748.
  • Martínez-Hidalgo, P., Galindo-Villardón, P., Trujillo, M. E., Igual, J. M., & Martínez-Molina, E. (2014). Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising Plant Probiotic Bacteria. Sci Rep, 4(1), 1-11.
  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60
  • Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, Reddy T, Pati A, Ivanova NN, Markowitz V, Kyrpides NC, Woyke T, Göker M, Klenk HP (2014) Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxon. Stand Genom Sci. 8(9):2
  • Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354
  • Qin, S., Li, J., Chen, H. H., Zhao, G. Z., Zhu, W. Y., Jiang, C. L., Xu, L.H., & Li, W. J. (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol, 75(19), 6176-6186.
  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313
  • Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland
  • Tang, X., Zhao, J., Li, K., Chen, Z., Sun, Y., & Gao, J. (2019). Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. Int J Syst Evol Micr, 69(8), 2202-2207.
  • Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J.F., & Morra, M. J. (2002). Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol, 68(5), 2161-2171.
  • Trujillo, M. E., Alonso-Vega, P., Rodríguez, R., Carro, L., Cerda, E., Alonso, P., & Martínez-Molina, E. (2010). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. The ISME journal, 4(10), 1265-1281.
  • Trujillo, M. E., Riesco, R., Benito, P., & Carro, L. (2015). Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol, 6, 1341.
  • Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M. H., et al. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. In Probiotics and plant health (pp. 41-70). Springer, Singapore.
  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Micr, 67(5), 1613.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Hilal Ay 0000-0002-8735-4703

Proje Numarası -
Yayımlanma Tarihi 30 Eylül 2020
Kabul Tarihi 7 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 30 Sayı: 3

Kaynak Göster

APA Ay, H. (2020). Phylogeny of Plant Growth-Promoting Actinobacteria Isolated from Legume Nodules in Turkey. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(3), 611-619. https://doi.org/10.29133/yyutbd.705227

Creative Commons License
Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi CC BY 4.0 lisanslıdır.