Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Absorbed Radiation Dose Levels of Lenses Thyroid and Oral Mucosa in Computed Tomography Imagining: Phantom Study

Yıl 2020, Cilt: 6 Sayı: 1, 23 - 27, 12.01.2020
https://doi.org/10.30934/kusbed.603335

Öz

Objective:
Head-neck computed tomography (CT) imaging is one of
the most common tomography examinations in medical imaging. Lenses and thyroid
are among the most sensitive organs to radiation. The aim of this study was to
determine the radiation dose levels to which the patient's lens, oral mucosa, and
thyroid were during head and neck CT imaging.



Methods:
Thyroid, oral mucosa and lens areas of human
equivalent Alderson rando phantom were placed in thermoluminescence dosimeter
(TLD) dosimeters and computerized tomography imaging of head-neck of phantom
was performed in this study. A total of 18 TLD dosimetry was used in this
study. Firstly, dosimeters were calibrated. 6 of these dosimeters were placed
on the thyroid of the phantom and 4 of them were placed in the mouth and 4 of
them were in the lens. 4 dosimeters were used for background measurements



Results:
The radiation dose in TLDs placed at the center of
the lens was between 15.03 and 23.71 mSv (mean 19.83±3.93 mSv), the oral mucosa
was 10.36 to 19.47 mSv (mean 15.15±2.96 mSv), and the thyroid gland was between
11.21 and 16.73 mSv (mean 13.97±3.90 mSv).



Conclusion:
The permissible radiation dose for whole body and
eye lenses in ICRP reports is 20 mSv/year for radiation officers. Likewise,
there is no definite limit for patients, it is aimed to keep the dose level to
a minimum. Therefore, knowing the reference dose is important for imaging
planning.

Kaynakça

  • Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure and associated radiation-induced cancer risks from CT of adults. Radio. 2009;251(1):175-84.
  • McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT: radiation dose in CT. Radiograph. 2002;22(6):1541-1553.
  • Işık Z, Selçuk H, Albayram S. Bilgisayarlı tomografi ve radyasyon. Kln Gelşm. 2010;23:16-18.
  • Tomar SS, Bhargava A, Reddy N. Significance of computed tomography scans in head injury. Open J Clinic Diagn. 2013;3(03):109-114.
  • Sharif-Alhoseini M, Khodadadi H, Chardoli M, Rahimi-Movaghar V. Indications for brain computed tomography scan after minor head injury. J Emerg Trau Shoc. 2011;4(4):472-476.
  • Wang X, You JJ. Head CT for nontrauma patients in the emergency department: clinical predictors of abnormal findings. Radio. 2013;266(3):783-790.
  • Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries. The Lancet. 2004;363(9406):345-351.
  • Ron E. Cancer risks from medical radiation. Health Phys. 2003;85(1):47-59.
  • Takamura N, Orita M, Saenko V, Yamashita S, Nagataki S, Demidchik Y. Radiation and risk of thyroid cancer: Fukushima and Chernobyl. Lancet Diabet Endoc. 2016;4(8):647.
  • Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. British J Radio. 2008;81(965):362-378.
  • Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Eng J Medic. 2007;357(22):2277-2284.
  • Amis ES Jr, Butler PF, Applegate KE, et al. American College of Radiology white paper on radiation dose in medicine. J Amerc Col Radio. 2007;4(5):272-284.
  • Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Canc Letter. 2015;368(2):262-274.
  • Shore RE. Radiation and cataract risk: Impact of recent epidemiologic studies on ICRP judgments. Mutation Resc Rev Mutation Resrc. 2016;770:231-237.
  • Boal TJ, Pinak M. Dose limits to the lens of the eye: International Basic Safety Standards and related guidance. Ann ICRP. 2015;44(Suppl. 1):112-117.
  • Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1-2):1-322.
  • Lee GS, Ki JS, Seo YS, Kim JD. Effective dose from direct and indirect digital panoramic units. Imag Sci Dentis. 2013;43(2):77-84.
  • Günay O, Demir M. Bilgisayarlı tomografi çekimlerinde hastanın yakın çevresinde radyasyon dozu ölçümleri. SDÜ Fen Bilim Enst Derg. 2019;23(3):792-796.
  • Jibiri NN, Adewale AA. Estimation of radiation dose to the lens of eyes of patients undergoing cranial computed tomography in a teaching Hospital in Osun state, Nigeria. I J Radia Res. 2014;12(1):53-60.
  • Perisinakis K, Raissaki M, Tzedakis A, Theocharopoulos N, Damilakis J, Gourtsoyiannis N. Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study. Med Phys. 2005;32(4):1024-1030.
  • Kleiman NJ. Radiation cataract. Annals ICRP. 2012;41(3-4):80-97.
  • Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidem. 2008;168(6):620-631.
  • Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radio. 2012;262(1):191-198.
  • Lund E, Halaburt H. Irradiation dose to the lens of the eye during CT of the head. Neuroradio. 1982;22(4):181-184.
  • Akhilesh P, Kulkarni AR, Jamhale SH, Sharma SD, Kumar R, Datta D. Estimation of eye lens dose during brain scans using Gafchromic Xr-QA2 film in various multidetector CT scanners. Rad protect dosm. 2017;174(2):236-241.
  • Bahreyni Toossi MT, Zare H, Eslami Z, et al. Assessment of radiation dose to the lens of the eye and thyroid of patients undergoing head and neck computed tomography at five hospitals in Mashhad, Iran. I J Med Phys. 2018;15(4):226-230.
  • Abuzaid MM, Elshami W, Haneef C, Alyafei S. Thyroid shield during brain CT scan: dose reduction and image quality evaluation. Imag Med. 2017;9(3):45-48.
  • Santos FS, Gomez AML, da Silva CAM, do Carmo Santana P, Mourao AP. Analysis of thyroid absorbed dose in cervical CT scan with the use of bismuth shielding. Brazil J Rad Scienc. 2019;7(2A):1-8.
  • Aytugar E, Kose TE, Gumru B, et al. Are bismuth shields useful in dentomaxillofacial radiology practice for the protection of eyes and thyroid glands from ionizing radiation? Iran J Radio. 2018;15(3):e40723. doi:10.5812/iranjradiol.40723
  • Iwai K, Hashimoto K, Nishizawa K, Sawada K, Honda K. Evaluation of effective dose from a RANDO phantom in video fluorography diagnostic procedures for diagnosing dysphagia. Dentomaxil Radio. 2011;40(2):96-101. doi:10.1259/dmfr/51307488

Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması

Yıl 2020, Cilt: 6 Sayı: 1, 23 - 27, 12.01.2020
https://doi.org/10.30934/kusbed.603335

Öz

Amaç: Baş ve boyun bilgisayarlı tomografi (BT)
görüntülemesi, en sık kullanılan radyolojik incelemelerinden biridir. Birçok
hastalığın tanısında önemli rol oynar. Lens ve tiroid bezi radyasyona karşı en
duyarlı organlardandır. Bu çalışmanın amacı, BT görüntülemesi yapılan
hastaların, lens, oral mukoza ve tiroid dokusunun maruz kaldığı radyasyon
dozunun belirlenmesidir.

Yöntem:
Çalışmada, insan eşdeğeri olan Alderson Rando
fantomunun tiroid, oral mukoza, lens bölgelerine termolüminesans dozimetreleri
(TLD) yerleştirilmiş ve fantomun baş-boyun bölgesinin BT görüntülemesi
yapılmıştır. Toplam 18 adet TLD kullanılmıştır. Öncelikle dozimetrelerin
kalibrasyon işlemleri yapılmıştır. Bu dozimetrelerden 6 tanesi fantomun tiroid
bölgesine, 4 tanesi oral mukozaya, 4 tanesi de lens bölgesine
yerleştirilmiştir. 4 tane dozimetre ise arkaplan (background) ölçümleri için
kullanılmıştır.

Bulgular:
Lens merkezine yerleştirilen TLD’lerdeki radyasyon
dozu 15,03 ile 23,71 mSv arasında (ortalama 19,83±3,93 mSv), oral mukozada
10,36 ile 19,47 mSv arasında (ortalama 15,15±2,96 mSv), tiroid bezinde ise
11,21 ile 16,73 mSv arasında (ortalama 13,97±3,90 mSv) bulunmuştur.

Sonuç:
Uluslararası Radyolojik Koruma Komisyonu
(ICRP)raporlarında tüm vücut ve lensler için müsaade edilen radyasyon dozu,
radyasyon görevlilerinde 20 mSv/yıl’dır. Hastalar için kesin bir limit
olmamakla beraber, doz düzeyinin minimum tutulması amaçlanır. Bu nedenle
referans dozunun bilinmesi çekim planlaması için önemlidir.

Kaynakça

  • Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure and associated radiation-induced cancer risks from CT of adults. Radio. 2009;251(1):175-84.
  • McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT: radiation dose in CT. Radiograph. 2002;22(6):1541-1553.
  • Işık Z, Selçuk H, Albayram S. Bilgisayarlı tomografi ve radyasyon. Kln Gelşm. 2010;23:16-18.
  • Tomar SS, Bhargava A, Reddy N. Significance of computed tomography scans in head injury. Open J Clinic Diagn. 2013;3(03):109-114.
  • Sharif-Alhoseini M, Khodadadi H, Chardoli M, Rahimi-Movaghar V. Indications for brain computed tomography scan after minor head injury. J Emerg Trau Shoc. 2011;4(4):472-476.
  • Wang X, You JJ. Head CT for nontrauma patients in the emergency department: clinical predictors of abnormal findings. Radio. 2013;266(3):783-790.
  • Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic x-rays: estimates for the UK and 14 other countries. The Lancet. 2004;363(9406):345-351.
  • Ron E. Cancer risks from medical radiation. Health Phys. 2003;85(1):47-59.
  • Takamura N, Orita M, Saenko V, Yamashita S, Nagataki S, Demidchik Y. Radiation and risk of thyroid cancer: Fukushima and Chernobyl. Lancet Diabet Endoc. 2016;4(8):647.
  • Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. British J Radio. 2008;81(965):362-378.
  • Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Eng J Medic. 2007;357(22):2277-2284.
  • Amis ES Jr, Butler PF, Applegate KE, et al. American College of Radiology white paper on radiation dose in medicine. J Amerc Col Radio. 2007;4(5):272-284.
  • Hamada N, Fujimichi Y. Role of carcinogenesis related mechanisms in cataractogenesis and its implications for ionizing radiation cataractogenesis. Canc Letter. 2015;368(2):262-274.
  • Shore RE. Radiation and cataract risk: Impact of recent epidemiologic studies on ICRP judgments. Mutation Resc Rev Mutation Resrc. 2016;770:231-237.
  • Boal TJ, Pinak M. Dose limits to the lens of the eye: International Basic Safety Standards and related guidance. Ann ICRP. 2015;44(Suppl. 1):112-117.
  • Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs-threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41(1-2):1-322.
  • Lee GS, Ki JS, Seo YS, Kim JD. Effective dose from direct and indirect digital panoramic units. Imag Sci Dentis. 2013;43(2):77-84.
  • Günay O, Demir M. Bilgisayarlı tomografi çekimlerinde hastanın yakın çevresinde radyasyon dozu ölçümleri. SDÜ Fen Bilim Enst Derg. 2019;23(3):792-796.
  • Jibiri NN, Adewale AA. Estimation of radiation dose to the lens of eyes of patients undergoing cranial computed tomography in a teaching Hospital in Osun state, Nigeria. I J Radia Res. 2014;12(1):53-60.
  • Perisinakis K, Raissaki M, Tzedakis A, Theocharopoulos N, Damilakis J, Gourtsoyiannis N. Reduction of eye lens radiation dose by orbital bismuth shielding in pediatric patients undergoing CT of the head: a Monte Carlo study. Med Phys. 2005;32(4):1024-1030.
  • Kleiman NJ. Radiation cataract. Annals ICRP. 2012;41(3-4):80-97.
  • Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidem. 2008;168(6):620-631.
  • Wang J, Duan X, Christner JA, Leng S, Grant KL, McCollough CH. Bismuth shielding, organ-based tube current modulation, and global reduction of tube current for dose reduction to the eye at head CT. Radio. 2012;262(1):191-198.
  • Lund E, Halaburt H. Irradiation dose to the lens of the eye during CT of the head. Neuroradio. 1982;22(4):181-184.
  • Akhilesh P, Kulkarni AR, Jamhale SH, Sharma SD, Kumar R, Datta D. Estimation of eye lens dose during brain scans using Gafchromic Xr-QA2 film in various multidetector CT scanners. Rad protect dosm. 2017;174(2):236-241.
  • Bahreyni Toossi MT, Zare H, Eslami Z, et al. Assessment of radiation dose to the lens of the eye and thyroid of patients undergoing head and neck computed tomography at five hospitals in Mashhad, Iran. I J Med Phys. 2018;15(4):226-230.
  • Abuzaid MM, Elshami W, Haneef C, Alyafei S. Thyroid shield during brain CT scan: dose reduction and image quality evaluation. Imag Med. 2017;9(3):45-48.
  • Santos FS, Gomez AML, da Silva CAM, do Carmo Santana P, Mourao AP. Analysis of thyroid absorbed dose in cervical CT scan with the use of bismuth shielding. Brazil J Rad Scienc. 2019;7(2A):1-8.
  • Aytugar E, Kose TE, Gumru B, et al. Are bismuth shields useful in dentomaxillofacial radiology practice for the protection of eyes and thyroid glands from ionizing radiation? Iran J Radio. 2018;15(3):e40723. doi:10.5812/iranjradiol.40723
  • Iwai K, Hashimoto K, Nishizawa K, Sawada K, Honda K. Evaluation of effective dose from a RANDO phantom in video fluorography diagnostic procedures for diagnosing dysphagia. Dentomaxil Radio. 2011;40(2):96-101. doi:10.1259/dmfr/51307488
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Özgün Araştırma
Yazarlar

Osman Günay 0000-0003-0760-554X

Özcan Gündoğdu 0000-0003-0171-3179

Mustafa Demir 0000-0002-9813-1628

Hatice Semrin Timlioğlu İper 0000-0003-2112-0602

İhsan Kuru Bu kişi benim 0000-0002-7985-3182

Doğan Yaşar Bu kişi benim 0000-0002-1421-1680

Serpil Aközcan 0000-0001-6661-5540

Onur Yarar 0000-0001-9543-6891

Yayımlanma Tarihi 12 Ocak 2020
Gönderilme Tarihi 7 Ağustos 2019
Kabul Tarihi 27 Aralık 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 6 Sayı: 1

Kaynak Göster

APA Günay, O., Gündoğdu, Ö., Demir, M., Timlioğlu İper, H. S., vd. (2020). Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 6(1), 23-27. https://doi.org/10.30934/kusbed.603335
AMA Günay O, Gündoğdu Ö, Demir M, Timlioğlu İper HS, Kuru İ, Yaşar D, Aközcan S, Yarar O. Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması. KOU Sag Bil Derg. Ocak 2020;6(1):23-27. doi:10.30934/kusbed.603335
Chicago Günay, Osman, Özcan Gündoğdu, Mustafa Demir, Hatice Semrin Timlioğlu İper, İhsan Kuru, Doğan Yaşar, Serpil Aközcan, ve Onur Yarar. “Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid Ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6, sy. 1 (Ocak 2020): 23-27. https://doi.org/10.30934/kusbed.603335.
EndNote Günay O, Gündoğdu Ö, Demir M, Timlioğlu İper HS, Kuru İ, Yaşar D, Aközcan S, Yarar O (01 Ocak 2020) Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6 1 23–27.
IEEE O. Günay, Ö. Gündoğdu, M. Demir, H. S. Timlioğlu İper, İ. Kuru, D. Yaşar, S. Aközcan, ve O. Yarar, “Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması”, KOU Sag Bil Derg, c. 6, sy. 1, ss. 23–27, 2020, doi: 10.30934/kusbed.603335.
ISNAD Günay, Osman vd. “Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid Ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi 6/1 (Ocak 2020), 23-27. https://doi.org/10.30934/kusbed.603335.
JAMA Günay O, Gündoğdu Ö, Demir M, Timlioğlu İper HS, Kuru İ, Yaşar D, Aközcan S, Yarar O. Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması. KOU Sag Bil Derg. 2020;6:23–27.
MLA Günay, Osman vd. “Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid Ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması”. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, c. 6, sy. 1, 2020, ss. 23-27, doi:10.30934/kusbed.603335.
Vancouver Günay O, Gündoğdu Ö, Demir M, Timlioğlu İper HS, Kuru İ, Yaşar D, Aközcan S, Yarar O. Bilgisayarlı Tomografi Çekimlerinde Lens Tiroid ve Oral Mukoza Absorbe Radyasyon Doz Düzeylerinin Belirlenmesi: Fantom Çalışması. KOU Sag Bil Derg. 2020;6(1):23-7.

Cited By

Evaluating Radiation Exposure to Oral Tissues in C-Arm Fluoroscopy A Dose Analysis
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.313

Radiation Dose Levels in Submandibular and Sublingual Gland Regions during C-Arm Scopy
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.320