Araştırma Makalesi
BibTex RIS Kaynak Göster

Biomechanical Evaluation of Gait Characteristics of the Children with Cerebral Palsy

Yıl 2020, Sayı: 20, 77 - 84, 31.12.2020
https://doi.org/10.31590/ejosat.747998

Öz

Cerebral palsy (CP) is a disease that causes several deformities in the musculoskeletal system and it is manifested by various gait pathologies. Crouch gait is one of the most common gait problems. It is known that the kinetic and kinematic parameters of the patients with CP differ from healthy individuals. In this study, it was aimed to determine the differences in joint kinematics, joint kinetics, and muscle forces between healthy children and children with crouch gait. To do so, OpenSim was employed for the analysis of the patients with CP and healthy individuals during walking. Flexion/extension angles of the hip, knee, and ankle joints were obtained using the inverse kinematics approach. The inverse dynamics approach was applied for the calculation of the joint moments. Muscle forces of the medial hamstring, biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were calculated using the static optimization method. It was investigated whether the timings of the theoretically predicted muscle activations match with the experimental data by using electromyography (EMG) data recorded from patients with CP. There was no significant difference in the flexion/extension angle of the hip joint between children with CP and healthy individuals. However, flexion/extension angles of the knee and ankle joints of the children with CP were found to be significantly different from healthy individuals. Significant differences were also found between the patients with CP and healthy individuals for the hip, knee, and ankle joint moments in the sagittal plane, except for the hip extensor moment and second knee extensor moment. While biceps femoris and semimembranosus muscle forces of the children with CP were higher than those of healthy individuals, gastrocnemius, rectus femoris, and tibialis anterior muscle forces were lower. The activation patterns of the calculated muscle forces were found to be compatible with the experimentally obtained activation times. 

Kaynakça

  • Bar-On, L., Molenaers, G., Aertbelien, E., Monari, D., Feys, H., & Desloovere K. (2014). The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Research in Developmental Disabilities, 35, 3354–3364. DOI: 10.1016/j.ridd.2014.07.053
  • Correa, T. A., Schache, A. G., Graham, H. K., Baker, R., Thomason, P., & Pandy, M. G. (2012). Potential of lower-limb muscles to accelerate the body during cerebral palsy gait. Gait & Posture, 36, 194–200. DOI: 10.1016/j.gaitpost.2012.02.014
  • Steele, K. M., van der Krogt, M. M., Schwartz, M. H., & Delp, S. L. (2012). How much muscle strength is required to walk in a crouch gait? Journal of Biomechanics, 45, 2564-2569. DOI: 10.1016/j.jbiomech.2012.07.028
  • Gage, J. R. (1990). Surgical treatment of knee dysfunction in cerebral palsy. Clinical Orthopaedics and Related Reseach, 253, 45–54. PMID: 2317990
  • Sutherland, D. H., & Davids, J. R. (1993). Common gait abnormalities of the knee in cerebral palsy. Clinical Orthopaedics and Related Reseach, 288, 139– 147. PMID: 8458127
  • Hicks, J. L., Schwartz, M. H., Arnold, A. S., & Delp, S. L. (2008). Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. Journal of Biomechanics, 41, 960-967. DOI: 10.1016/j.jbiomech.2008.01.002
  • Sangeux, M., & Armand, S. (2015). Kinematic deviations in children with cerebral palsy. In F., Canavese & J., Deslandes (Ed.). Orthopedic management of children with cerebral palsy: A comprehensive approach (pp. 241-256). New York, NY: Nova Science Publishers Inc.
  • De Luca, C. J. (2002). Surface electromyography: Detection and recording. DelSys Incorporated, 10, 1-10. https://www.delsys.com/downloads/TUTORIAL/semg-detection-and-recording.pdf
  • Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54, 1940–1950. DOI: 10.1109/TBME.2007.901024
  • Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S., & Delp, S. L. (2010). Muscle contributions to support and progression during single-limb stance in crouch gait. Journal of Biomechanics, 43, 2099-2105. DOI: 10.1016/j.jbiomech.2010.04.003
  • Rajagopal, A., Dembia, C., DeMers, M., Delp, D., Hicks, J., & Delp, S. (2016). Full body musculoskeletal model for muscle-driven simulation of human gait. IEEE Transactions on Biomedical Engineering, 63, 2068–2079. DOI: 10.1109/TBME.2016.2586891
  • Arslan, Y. Z., Jinha, A., Kaya, M., & Herzog, W. (2013). Prediction of muscle forces using static optimization for different contractile conditions. Journal of Mechanics in Medicine and Biology, 13, 1350022. DOI: 10.1142/S021951941350022X
  • Anderson, F. C., & Pandy, M. G. (2001). Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics, 34, 153–161. DOI: 10.1016/S0021-9290(00)00155-X
  • Fukuchi, C. A., Fukuchi, R. K., & Duarte, M. (2018). A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ, 6, e4640. DOI: 10.7717/peerj.4640
  • Arslan, Y. Z., Adli, M. A., Akan, A., & Baslo, M. (2010). Prediction of externally applied forces to human hands using frequency content of surface EMG signals. Computer Methods and Programs in Biomedicine, 20, 36-44. DOI: 10.1016/j.cmpb.2009.08.005
  • Johnson, D. C., Damiano, D. L., & Abel, M. F. (1997). The evolution of gait in childhood and adolescent cerebral palsy. Journal of Pediatric Orthopaedics, 17, 392–396. DOI: 10.1097/01241398-199705000-00022
  • Steele, K. M., Damiano, D. L., Eek, M. N., Unger, M., & Delp, S. L. (2012). Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait. Journal of Pediatric Rehabilitation Medicine, 5, 99– 106. DOI: 10.3233/PRM-2012-0201
  • Klotz, M. C. M., Krautwurst, B. K., Hirsch, K., Niklasch, M., Maier, M. W., Wolf, S. I., & Dreher, T. (2018). Does additional patella tendon shortening influence the effects of multilevel surgery to correct flexed knee gait in cerebral palsy: A randomized controlled trial. Gait & Posture, 60, 217–224. DOI: 10.1016/j.gaitpost.2017.12.004
  • Putz, C, Wolf, S. I., Mertens, E. M., Geisbusch, A., Gantz, S., Braatz, F., Döderlein, L., & Dreher, T. (2017). Effects of multilevel surgery on a flexed knee gait in adults with cerebral palsy. The Bone and Joint Journal, 9, 9-B (1256-64). DOI: 10.1302/0301-620X.99B9.BJJ-2016-1155.R1
  • Sossai, R., Vavken, P., Brunner, R., Camathias, C., Graham, H. K., & Rutz, E. (2015). Patellar tendon shortening for flexed knee gait in spastic diplegia. Gait & Posture, 41, 658-665. DOI: 10.1016/j.gaitpost.2015.01.018
  • Lotman, D.B. (1976). Knee flexion deformity and patella alta in spastic cerebral palsy. Developmental Medicine & Child Neurology, 18, 315–319. DOI: 10.1111/j.1469-8749.1976.tb03653.x
  • Lenhart, R. L., Brandon, S. C. E., Smith, C. R., Novacheck, T. F., Schwartz, M. H., & Thelen, D. G. (2017). Influence of patellar position on the knee extensor mechanism in normal and crouched walking. Journal of Biomechanics, 51, 1–7. DOI: 10.1016/j.jbiomech.2016.11.052
  • Ma, Y., Liang, Y., Kang, X., Shao, M., Siemelink, L., & Zhang, Y. (2019). Gait characteristics of children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Applied Bionics and Biomechanics, 2019, 1-9. DOI: 10.1155/2019/8049156
  • Lin, C. J., Guo, L. Y., Su, F. C., Chou, Y. L., & Cherng, R. J. (2000). Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy. Gait & Posture, 11, 224-232. DOI: 10.1016/S0966-6362(00)00049-7
  • Blazkiewicz, M., & Wit, A. (2018). Compensatory strategy for ankle dorsiflexion muscle weakness during gait in patients with drop-foot. Gait & Posture, 68, 88–94. DOI: 10.1016/j.gaitpost.2018.11.011

Serebral Palsili Çocukların Yürüme Karakteristiğinin Biyomekanik Değerlendirmesi

Yıl 2020, Sayı: 20, 77 - 84, 31.12.2020
https://doi.org/10.31590/ejosat.747998

Öz

Serebral palsi (SP), kas iskelet sisteminde pek çok deformiteye neden olan ve çeşitli yürüme patolojileri ile kendini gösteren bir hastalıktır. Bükük diz yürüyüşü en çok karşılaşılan yürüme problemlerinden biridir. SP’li hastaların kinetik ve kinematik parametrelerinin sağlıklı kişilere göre farklılık gösterdiği bilinmektedir. Bu çalışmada, bükük diz yürüyüşüne sahip çocukların eklem kinematiği ve kinetiği ile alt ekstremite kas kuvvetleri açısından sağlıklı bireylere göre olan farklılıklarının belirlenmesi amaçlanmıştır. Bunun için OpenSim yazılımı kullanarak SP’li hastaların ve sağlıklı bireylerin yürüme hareketinin analizi yapılmıştır. Ters kinematik analiz ile kalça, diz ve ayak bileği fleksiyon / ekstansiyon açıları elde edilmiştir. Eklem momentlerinin hesaplanması için ters dinamik yöntemi kullanılmıştır. Statik optimizasyon yöntemi ile medial hamstring, biseps femoris, rektus femoris, gastroknemius ve tibialis anterior kasları için kas kuvvetleri hesaplanmıştır. SP’li hastalardan kaydedilen elektromiyografi (EMG) verisi ile de kestirilen kas aktivasyonlarının zamanlamalarının deneysel veriyle örtüşüp örtüşmediği kontrol edilmiştir. SP’li çocuklarda kalça eklemi fleksiyon / ekstansiyon açısında sağlıklı bireylere göre farklılık gözlenmemektedir. Ancak SP’li çocuklarda diz ve ayak bileği fleksiyon/ektansiyon açılarının sağlıklı bireylerden anlamlı şekilde farklı olduğu belirlenmiştir. Kalça, diz ve ayak bileğindeki fleksiyon/ekstansiyon momentleri incelendiğinde maksimum kalça ekstansör momenti ve ikinci diz ekstansör momenti dışındaki diğer bütün parametreler için SP’li hastalar ve sağlıklı bireyler arasında anlamlı farklılıklar tespit edilmiştir. SP’li çocuklarda biseps femoris ve semimembranosus kas kuvvetleri sağlıklı kişilere göre daha yüksek bulunurken, gastroknemius, rektus femoris ve tibialis anterior kas kuvvetleri daha düşük bulunmuştur. Kestirilen kas kuvvetleri EMG verisi ile karşılaştırıldığında kasların aktivasyon zamanlarının deneysel olarak elde edilen aktivasyon zamanları ile uyumlu olduğu görülmüştür.

Kaynakça

  • Bar-On, L., Molenaers, G., Aertbelien, E., Monari, D., Feys, H., & Desloovere K. (2014). The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Research in Developmental Disabilities, 35, 3354–3364. DOI: 10.1016/j.ridd.2014.07.053
  • Correa, T. A., Schache, A. G., Graham, H. K., Baker, R., Thomason, P., & Pandy, M. G. (2012). Potential of lower-limb muscles to accelerate the body during cerebral palsy gait. Gait & Posture, 36, 194–200. DOI: 10.1016/j.gaitpost.2012.02.014
  • Steele, K. M., van der Krogt, M. M., Schwartz, M. H., & Delp, S. L. (2012). How much muscle strength is required to walk in a crouch gait? Journal of Biomechanics, 45, 2564-2569. DOI: 10.1016/j.jbiomech.2012.07.028
  • Gage, J. R. (1990). Surgical treatment of knee dysfunction in cerebral palsy. Clinical Orthopaedics and Related Reseach, 253, 45–54. PMID: 2317990
  • Sutherland, D. H., & Davids, J. R. (1993). Common gait abnormalities of the knee in cerebral palsy. Clinical Orthopaedics and Related Reseach, 288, 139– 147. PMID: 8458127
  • Hicks, J. L., Schwartz, M. H., Arnold, A. S., & Delp, S. L. (2008). Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. Journal of Biomechanics, 41, 960-967. DOI: 10.1016/j.jbiomech.2008.01.002
  • Sangeux, M., & Armand, S. (2015). Kinematic deviations in children with cerebral palsy. In F., Canavese & J., Deslandes (Ed.). Orthopedic management of children with cerebral palsy: A comprehensive approach (pp. 241-256). New York, NY: Nova Science Publishers Inc.
  • De Luca, C. J. (2002). Surface electromyography: Detection and recording. DelSys Incorporated, 10, 1-10. https://www.delsys.com/downloads/TUTORIAL/semg-detection-and-recording.pdf
  • Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54, 1940–1950. DOI: 10.1109/TBME.2007.901024
  • Steele, K. M., Seth, A., Hicks, J. L., Schwartz, M. S., & Delp, S. L. (2010). Muscle contributions to support and progression during single-limb stance in crouch gait. Journal of Biomechanics, 43, 2099-2105. DOI: 10.1016/j.jbiomech.2010.04.003
  • Rajagopal, A., Dembia, C., DeMers, M., Delp, D., Hicks, J., & Delp, S. (2016). Full body musculoskeletal model for muscle-driven simulation of human gait. IEEE Transactions on Biomedical Engineering, 63, 2068–2079. DOI: 10.1109/TBME.2016.2586891
  • Arslan, Y. Z., Jinha, A., Kaya, M., & Herzog, W. (2013). Prediction of muscle forces using static optimization for different contractile conditions. Journal of Mechanics in Medicine and Biology, 13, 1350022. DOI: 10.1142/S021951941350022X
  • Anderson, F. C., & Pandy, M. G. (2001). Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics, 34, 153–161. DOI: 10.1016/S0021-9290(00)00155-X
  • Fukuchi, C. A., Fukuchi, R. K., & Duarte, M. (2018). A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ, 6, e4640. DOI: 10.7717/peerj.4640
  • Arslan, Y. Z., Adli, M. A., Akan, A., & Baslo, M. (2010). Prediction of externally applied forces to human hands using frequency content of surface EMG signals. Computer Methods and Programs in Biomedicine, 20, 36-44. DOI: 10.1016/j.cmpb.2009.08.005
  • Johnson, D. C., Damiano, D. L., & Abel, M. F. (1997). The evolution of gait in childhood and adolescent cerebral palsy. Journal of Pediatric Orthopaedics, 17, 392–396. DOI: 10.1097/01241398-199705000-00022
  • Steele, K. M., Damiano, D. L., Eek, M. N., Unger, M., & Delp, S. L. (2012). Characteristics associated with improved knee extension after strength training for individuals with cerebral palsy and crouch gait. Journal of Pediatric Rehabilitation Medicine, 5, 99– 106. DOI: 10.3233/PRM-2012-0201
  • Klotz, M. C. M., Krautwurst, B. K., Hirsch, K., Niklasch, M., Maier, M. W., Wolf, S. I., & Dreher, T. (2018). Does additional patella tendon shortening influence the effects of multilevel surgery to correct flexed knee gait in cerebral palsy: A randomized controlled trial. Gait & Posture, 60, 217–224. DOI: 10.1016/j.gaitpost.2017.12.004
  • Putz, C, Wolf, S. I., Mertens, E. M., Geisbusch, A., Gantz, S., Braatz, F., Döderlein, L., & Dreher, T. (2017). Effects of multilevel surgery on a flexed knee gait in adults with cerebral palsy. The Bone and Joint Journal, 9, 9-B (1256-64). DOI: 10.1302/0301-620X.99B9.BJJ-2016-1155.R1
  • Sossai, R., Vavken, P., Brunner, R., Camathias, C., Graham, H. K., & Rutz, E. (2015). Patellar tendon shortening for flexed knee gait in spastic diplegia. Gait & Posture, 41, 658-665. DOI: 10.1016/j.gaitpost.2015.01.018
  • Lotman, D.B. (1976). Knee flexion deformity and patella alta in spastic cerebral palsy. Developmental Medicine & Child Neurology, 18, 315–319. DOI: 10.1111/j.1469-8749.1976.tb03653.x
  • Lenhart, R. L., Brandon, S. C. E., Smith, C. R., Novacheck, T. F., Schwartz, M. H., & Thelen, D. G. (2017). Influence of patellar position on the knee extensor mechanism in normal and crouched walking. Journal of Biomechanics, 51, 1–7. DOI: 10.1016/j.jbiomech.2016.11.052
  • Ma, Y., Liang, Y., Kang, X., Shao, M., Siemelink, L., & Zhang, Y. (2019). Gait characteristics of children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Applied Bionics and Biomechanics, 2019, 1-9. DOI: 10.1155/2019/8049156
  • Lin, C. J., Guo, L. Y., Su, F. C., Chou, Y. L., & Cherng, R. J. (2000). Common abnormal kinetic patterns of the knee in gait in spastic diplegia of cerebral palsy. Gait & Posture, 11, 224-232. DOI: 10.1016/S0966-6362(00)00049-7
  • Blazkiewicz, M., & Wit, A. (2018). Compensatory strategy for ankle dorsiflexion muscle weakness during gait in patients with drop-foot. Gait & Posture, 68, 88–94. DOI: 10.1016/j.gaitpost.2018.11.011
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yunus Ziya Arslan 0000-0002-1861-9368

Yayımlanma Tarihi 31 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 20

Kaynak Göster

APA Arslan, Y. Z. (2020). Serebral Palsili Çocukların Yürüme Karakteristiğinin Biyomekanik Değerlendirmesi. Avrupa Bilim Ve Teknoloji Dergisi(20), 77-84. https://doi.org/10.31590/ejosat.747998