Araştırma Makalesi
BibTex RIS Kaynak Göster

Mersin Üniversitesi Su Ürünleri Fakültesi Uygulama Birimleri’nde Rejeneratif Tıp Araştırmalarında Model Organizma Olarak Yetiştirilen Ambystoma mexicanum’un DNA Barkodlaması ve Filogenisi

Yıl 2021, Cilt: 5 Sayı: 2, 161 - 176, 31.12.2021
https://doi.org/10.31594/commagene.1015429

Öz

Ambystoma mexicanum Ambystomatidae familyasında yer alır. Güney Meksika’dan Güney Alaska’ya kadar geniş bir coğrafyada yaşayan Ambystoma cinsinin 30 türünden biridir. Limb rejenerasyonunun yanında beyin, kalp, böbrek organlarını rejenere edebilmeleri nedeniyle, evrimsel biyoloji, gelişim biyolojisi ve rejeneratif tıp araştırmalarında model organizma olarak kabul edilir. Model organizmaların kullanıldığı araştırmalarda canlının tür teşhisinin doğru yapılması deneylerin tekrarlanabilirliği ve karşılaştırılabilirliği açısından önemlidir. Bu çalışmada; Mersin Üniversitesi Su Ürünleri Fakültesi Uygulama Birimleri’nde yetiştirilen aksolotlların tür teşhisini bütünleşik taksonomik yöntemler kullanarak kesinleştirmek amacıyla mtDNA sitokrom oksidaz alt ünite 1 (COI) ve sitokrom b (Cytb) gen fragmentleri moleküler belirteç olarak kullanılmış ve NCBI GenBank’ta daha önce dizisi verilmiş olan Ambsytoma türleri ile filogenetik analizler ve tür sınırlarını belirleme yöntemleri ile karşılaştırılmıştır. Farklı veri setlerinin kullanıldığı analizlerin tamamında söz konusu bireyler daha önceki çalışmalarda elde edilen A. mexicanum türü ile aday tür olarak gruplanmıştır. Bu çalışmada elde edilen tüm diziler ile NCBI GenBank’tan elde edilen A. mexicanum dizileri haplotip olarak gruplanmış olup genetik uzaklıkları 0 bulunmuş ve bu çalışmanın konusu olan bireylerin kesin olarak A. mexicanum türüne ait olduğu belirlenmiştir. Sonuçlar Ambystoma cinsi içerisinde bazı türlerin özellikle A. barbouri ve A. texanum ‘un tür kompleksi olabileceğini ortaya koymuştur. Diğer yandan A. mexicanum, COI, Cytb ve COI+Cytb birleştirilmiş veri setleri ile yapılan tüm analizlerde A. andersoni ile aday tür olarak gruplanmıştır. Bu sonuçlar söz konusu taksonların parafiletik olduğunu ve A. mexicanum türüne atanması gerektiğini ortaya koymuştur.

Destekleyen Kurum

Mersin Üniversitesi

Proje Numarası

2021-1-AP7-4362

Teşekkür

Bu proje, Mersin Üniversitesi BAP (Bilimsel Araştırma Projeleri Birimi) tarafından 2021-1-AP7-4362 proje kodu ile desteklenmiştir.

Kaynakça

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Arnason, U., Gullberg, A., Janke, A., Joss, J., & Elmerot, C. (2004). Mitogenomic analyses of deep gnathostome divergences: a fish is a fish. Gene, 333, 61-70. https://doi.org/10.1016/j.gene.2004.02.014
  • Bi, K., & Bogart, J.P. (2010). Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evolutionary Biology, 10(1), 1-14. https://doi.org/10.1186/1471-2148-10-238
  • Bortolus, A. (2008). Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO: A Journal of The Human Environment, 37(2), 114-118. https://doi.org/10.1579/0044-7447(2008)37[114:ECITBS]2.0.CO;2
  • Bouckaert, R.R., & Drummond, A.J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1), 1-11.
  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., ... & Drummond, A.J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537.
  • Chambers, E.A., & Hebert, P.D. (2016). Assessing DNA barcodes for species identification in North American reptiles and amphibians in natural history collections. PLoS One, 11(4), e0154363. https://doi.org/10.1371/journal.pone.0154363
  • Chippindale, P. T., Bonett, R. M., Baldwin, A. S., & Wiens, J. J. (2004). Phylogenetic evidence for a major reversal of life‐history evolution in plethodontid salamanders. Evolution, 58(12), 2809-2822.
  • Crandall, M.C.D.P.K., Clement, M., & Posada, D. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  • Demircan, T., Hacıbektaşoğlu, H., Sibai, M., Fesçioğlu, E.C., Altuntaş, E., Öztürk, G., & Süzek, B.E. (2020). Preclinical molecular signatures of spinal cord functional restoration: Optimizing the metamorphic axolotl (Ambystoma mexicanum) model in regenerative medicine. OMICS: A Journal of Integrative Biology, 24(6), 370-378. https://doi.org/10.1089/omi.2020.0024
  • Diaz Quiroz, J.F., & Echeverri, K. (2013). Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?. Biochemical Journal, 451(3), 353-364. https://doi.org/10.1042/BJ20121807
  • Echeverri, K. (2020). The various routes to functional regeneration in the central nervous system. Communications Biology, 3(1), 1-4. https://doi.org/10.1038/s42003-020-0773-z
  • Farkas, J.E., & Monaghan, J.R. (2015). Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl. Salamanders in Regeneration Research (pp. 27-46), Springer. https://doi.org/10.1007/978-1-4939-2495-0_3
  • Flot, J.F. (2015). Species delimitation's coming of age. Systematic Biology, 64(6), 897-899. https://doi.org/10.1093/sysbio/syv071
  • Gehlbach, F.R. (1967). Ambystoma tigrinum. Catalogue of American Amphibians and Reptiles (CAAR).
  • Gresens, J. (2004). An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Animal, 33(9), 41-47. https://doi.org/10.1038/laban1004-41
  • Hall, T. (2004). BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html
  • Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., & Vinh, L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
  • Katoh, K., & Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. https://doi.org/10.1007/BF01731581
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772-773. https://doi.org/10.1093/molbev/msw260
  • Lévesque, M., Villiard, É., & Roy, S. (2010). Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314(8), 684-697. https://doi.org/10.1002/jez.b.21371
  • Lust, K., & Tanaka, E.M. (2019). A comparative perspective on brain regeneration in amphibians and teleost fish. Developmental Neurobiology, 79(5), 424-436. https://doi.org/10.1002/dneu.22665
  • Maddison, W.P. (2021). Mesquite: a modular system for evolutionary analysis. Version 3.6. http://mesquiteproject.org
  • Mashkouli, M., Aghaei, M., & Mofid, M. R. (2020). Purification of Soluble Membrane-Bound Ambystoma mexicanum Epidermal Lipoxygenase from E. coli and Its Growth Effect on Human Fetal Foreskin Fibroblast. The Protein Journal, 39(4), 377-382. https://doi.org/10.1007/s10930-020-09898-w
  • Menger, B., Vogt, P.M., Allmeling, C., Radtke, C., Kuhbier, J.W., & Reimers, K. (2011). AmbLOXe—an epidermal lipoxygenase of the Mexican axolotl in the context of amphibian regeneration and its impact on human wound closure in vitro. Annals Of Surgery, 253(2), 410-418 https://doi.org/10.1097/SLA.0b013e318207f39c
  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
  • Moritz, C., Schneider, C.J., & Wake, D.B. (1992). Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology, 41(3), 273-291. https://doi.org/10.1093/sysbio/41.3.273
  • Mueller, R.L., Macey, J.R., Jaekel, M., Wake, D.B., & Boore, J.L. (2004). Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proceedings of the National Academy of Sciences, 101(38), 13820-13825. https://doi.org/10.1073/pnas.0405785101
  • O'Neill, E.M., Schwartz, R., Bullock, C.T., Williams, J S., Shaffer, H.B., Aguilar‐Miguel, X., ... & Weisrock, D.W. (2013). Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Molecular Ecology, 22(1), 111-129. https://doi.org/10.1111/mec.12049
  • Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., ... & Vogler, A.P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595-609.
  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G.J.M.E. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  • Rambaut, A. FigTree v1. 4.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. 2018.
  • Rambaut, A., Drummond, A., Xie, D., Baele, G., & Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/sysbio/syy032
  • Reiß, C., Olsson, L., & Hoßfeld, U. (2015). The history of the oldest self‐sustaining laboratory animal: 150 years of axolotl research. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(5), 393-404. https://doi.org/10.1002/jez.b.22617
  • Ren, Z.L., Yao, N.N., Liu, L., Wu, Y., & Qian, Z.Q. (2019). Characterization of the complete mitochondrial genome of the mole salamander Ambystoma talpoideum (Caudata: Ambystomatidae). Conservation Genetics Resources, 11(4), 397-400. https://doi.org/10.1007/s12686-018-1031-2
  • Robertson, A. V., Ramsden, C., Niedzwiecki, J., Fu, J., & Bogart, J. P. (2006). An unexpected recent ancestor of unisexual Ambystoma. Molecular Ecology, 15(11), 3339-3351.
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., ... & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029
  • Roy, S., & Lévesque, M. (2006). Limb regeneration in axolotl: is it superhealing?. The Scientific World Journal, 6, 12-25. https://doi.org/10.1100/tsw.2006.324
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
  • Sabin, K.Z., Jiang, P., Gearhart, M.D., Stewart, R., & Echeverri, K. (2019). AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Communications Biology, 2(1), 1-13. https://doi.org/10.1038/s42003-019-0335-4
  • Samuels, A.K., Weisrock, D.W., Smith, J.J., France, K.J., Walker, J.A., Putta, S., & Voss, S.R. (2005). Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. Gene, 349, 43-53. https://doi.org/10.1016/j.gene.2004.12.037
  • Shaffer, H.B., & McKnight, M.L. (1996). The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution, 50(1), 417-433. https://doi.org/10.1111/j.1558-5646.1996.tb04503.x
  • Sibai, M., Parlayan, C., Tuğlu, P., Öztürk, G., & Demircan, T. (2019). Integrative analysis of axolotl gene expression data from regenerative and wound healing limb tissues. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-56829-6
  • Siler, C.D., Freitas, E.S., Yuri, T., Souza, L., & Watters, J.L. (2021). Development and validation of four environmental DNA assays for species of conservation concern in the South-Central United States. Conservation Genetics Resources, 13(1), 35-40. https://doi.org/10.1007/S12686-020-01167-3
  • Sites Jr, J.W., & Marshall, J.C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution, 18(9), 462-470. https://doi.org/10.1016/S0169-5347(03)00184-8
  • Smith, M.A., Poyarkov Jr, N.A., & Hebert, P.D. (2008). DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Molecular Ecology Resources, 8(2), 235-246. https://doi.org/10.1111/j.1471-8286.2007.01964.x
  • Soriano-Lopez, M., Mota-Rojas, D., Iglesias, A.V., Ramirez-Necoechea, R., Olmos-Hernandez, A., Toca-Ramirez, J., & Alonso-Spilsbury, M. (2006). The Axolotl (Ambystoma mexicanum): Factors That Limit its Production and Alternatives for its Conservation. International Journal of Zoological Research 2(4), 362-368. https://doi.org/10.3923/ijzr.2006.362.368
  • Stamm, A., Strauß, S., Vogt, P., Scheper, T., & Pepelanova, I. (2018). Positive in vitro wound healing effects of functional inclusion bodies of a lipoxygenase from the Mexican axolotl. Microbial Cell Factories, 17(1), 1-9. https://doi.org/10.1186/s12934-018-0904-0
  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876. https://doi.org/10.1093/bioinformatics/btt499
  • Zhang, P., & Wake, D.B. (2009). Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 53(2), 492-508. https://doi.org/10.1016/j.ympev.2009.07.010

DNA Barcoding and Phylogeny of Ambystoma mexicanum Cultivated as a Model Organism in Regenerative Medicine Research at Mersin University Aquaculture Units of the Faculty of Fisheries

Yıl 2021, Cilt: 5 Sayı: 2, 161 - 176, 31.12.2021
https://doi.org/10.31594/commagene.1015429

Öz

Ambystoma mexicanum belongs to the family Ambystomatidae. It is one of the 30 species of the genus Ambystoma, which lives in a wide geography from southern Mexico to southern Alaska. It is accepted as a model organism in evolutionary biology, developmental biology, and regenerative medicine research. It can regenerate the brain, heart, and kidney organs as well as limb regeneration. Accurate identification of the model organism is important for the reproducibility and comparability of experiments. We aimed to confirm the species identification of axolotls using integrated taxonomic methods that were grown at Mersin University Aquaculture Units of the Faculty of Fisheries. Cytochrome oxidase subunit 1 (COI) and cytochrome b (Cytb) gene fragments of mtDNA sequences were used as molecular markers for phylogenetic analyses and species delimitation methods and compared with the sequences that were submitted to NCBI GenBank as species of Ambystoma. In the analyses that were conducted with different data sets, the individuals in question were grouped as a candidate species with the A. mexicanum species whose sequences were given in previous studies. All sequences obtained in this study and A. mexicanum sequences obtained from NCBI GenBank were grouped as haplotypes and their genetic distances were found to be 0 and it was determined that the individuals which were the subject of this study definitely belong to the A. mexicanum species. The results revealed that some species within the genus Ambystoma, especially A. barbouri and A. texanum, may be species complexes. On the other hand, A. mexicanum was grouped together with A. andersoni as candidate species in all analyses performed with the combined datasets of COI, Cytb, and COI+Cytb. These results revealed that the taxa in question are paraphyletic and should be assigned to the A. mexicanum species.

Proje Numarası

2021-1-AP7-4362

Kaynakça

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Arnason, U., Gullberg, A., Janke, A., Joss, J., & Elmerot, C. (2004). Mitogenomic analyses of deep gnathostome divergences: a fish is a fish. Gene, 333, 61-70. https://doi.org/10.1016/j.gene.2004.02.014
  • Bi, K., & Bogart, J.P. (2010). Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evolutionary Biology, 10(1), 1-14. https://doi.org/10.1186/1471-2148-10-238
  • Bortolus, A. (2008). Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO: A Journal of The Human Environment, 37(2), 114-118. https://doi.org/10.1579/0044-7447(2008)37[114:ECITBS]2.0.CO;2
  • Bouckaert, R.R., & Drummond, A.J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology, 17(1), 1-11.
  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., ... & Drummond, A.J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537.
  • Chambers, E.A., & Hebert, P.D. (2016). Assessing DNA barcodes for species identification in North American reptiles and amphibians in natural history collections. PLoS One, 11(4), e0154363. https://doi.org/10.1371/journal.pone.0154363
  • Chippindale, P. T., Bonett, R. M., Baldwin, A. S., & Wiens, J. J. (2004). Phylogenetic evidence for a major reversal of life‐history evolution in plethodontid salamanders. Evolution, 58(12), 2809-2822.
  • Crandall, M.C.D.P.K., Clement, M., & Posada, D. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657-1660. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  • Demircan, T., Hacıbektaşoğlu, H., Sibai, M., Fesçioğlu, E.C., Altuntaş, E., Öztürk, G., & Süzek, B.E. (2020). Preclinical molecular signatures of spinal cord functional restoration: Optimizing the metamorphic axolotl (Ambystoma mexicanum) model in regenerative medicine. OMICS: A Journal of Integrative Biology, 24(6), 370-378. https://doi.org/10.1089/omi.2020.0024
  • Diaz Quiroz, J.F., & Echeverri, K. (2013). Spinal cord regeneration: where fish, frogs and salamanders lead the way, can we follow?. Biochemical Journal, 451(3), 353-364. https://doi.org/10.1042/BJ20121807
  • Echeverri, K. (2020). The various routes to functional regeneration in the central nervous system. Communications Biology, 3(1), 1-4. https://doi.org/10.1038/s42003-020-0773-z
  • Farkas, J.E., & Monaghan, J.R. (2015). Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl. Salamanders in Regeneration Research (pp. 27-46), Springer. https://doi.org/10.1007/978-1-4939-2495-0_3
  • Flot, J.F. (2015). Species delimitation's coming of age. Systematic Biology, 64(6), 897-899. https://doi.org/10.1093/sysbio/syv071
  • Gehlbach, F.R. (1967). Ambystoma tigrinum. Catalogue of American Amphibians and Reptiles (CAAR).
  • Gresens, J. (2004). An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Animal, 33(9), 41-47. https://doi.org/10.1038/laban1004-41
  • Hall, T. (2004). BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html
  • Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q., & Vinh, L.S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
  • Katoh, K., & Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010
  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. https://doi.org/10.1007/BF01731581
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096
  • Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T., & Calcott, B. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34(3), 772-773. https://doi.org/10.1093/molbev/msw260
  • Lévesque, M., Villiard, É., & Roy, S. (2010). Skin wound healing in axolotls: a scarless process. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314(8), 684-697. https://doi.org/10.1002/jez.b.21371
  • Lust, K., & Tanaka, E.M. (2019). A comparative perspective on brain regeneration in amphibians and teleost fish. Developmental Neurobiology, 79(5), 424-436. https://doi.org/10.1002/dneu.22665
  • Maddison, W.P. (2021). Mesquite: a modular system for evolutionary analysis. Version 3.6. http://mesquiteproject.org
  • Mashkouli, M., Aghaei, M., & Mofid, M. R. (2020). Purification of Soluble Membrane-Bound Ambystoma mexicanum Epidermal Lipoxygenase from E. coli and Its Growth Effect on Human Fetal Foreskin Fibroblast. The Protein Journal, 39(4), 377-382. https://doi.org/10.1007/s10930-020-09898-w
  • Menger, B., Vogt, P.M., Allmeling, C., Radtke, C., Kuhbier, J.W., & Reimers, K. (2011). AmbLOXe—an epidermal lipoxygenase of the Mexican axolotl in the context of amphibian regeneration and its impact on human wound closure in vitro. Annals Of Surgery, 253(2), 410-418 https://doi.org/10.1097/SLA.0b013e318207f39c
  • Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
  • Moritz, C., Schneider, C.J., & Wake, D.B. (1992). Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology, 41(3), 273-291. https://doi.org/10.1093/sysbio/41.3.273
  • Mueller, R.L., Macey, J.R., Jaekel, M., Wake, D.B., & Boore, J.L. (2004). Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proceedings of the National Academy of Sciences, 101(38), 13820-13825. https://doi.org/10.1073/pnas.0405785101
  • O'Neill, E.M., Schwartz, R., Bullock, C.T., Williams, J S., Shaffer, H.B., Aguilar‐Miguel, X., ... & Weisrock, D.W. (2013). Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Molecular Ecology, 22(1), 111-129. https://doi.org/10.1111/mec.12049
  • Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., ... & Vogler, A.P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595-609.
  • Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G.J.M.E. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  • Rambaut, A. FigTree v1. 4.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. 2018.
  • Rambaut, A., Drummond, A., Xie, D., Baele, G., & Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/sysbio/syy032
  • Reiß, C., Olsson, L., & Hoßfeld, U. (2015). The history of the oldest self‐sustaining laboratory animal: 150 years of axolotl research. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(5), 393-404. https://doi.org/10.1002/jez.b.22617
  • Ren, Z.L., Yao, N.N., Liu, L., Wu, Y., & Qian, Z.Q. (2019). Characterization of the complete mitochondrial genome of the mole salamander Ambystoma talpoideum (Caudata: Ambystomatidae). Conservation Genetics Resources, 11(4), 397-400. https://doi.org/10.1007/s12686-018-1031-2
  • Robertson, A. V., Ramsden, C., Niedzwiecki, J., Fu, J., & Bogart, J. P. (2006). An unexpected recent ancestor of unisexual Ambystoma. Molecular Ecology, 15(11), 3339-3351.
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., ... & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029
  • Roy, S., & Lévesque, M. (2006). Limb regeneration in axolotl: is it superhealing?. The Scientific World Journal, 6, 12-25. https://doi.org/10.1100/tsw.2006.324
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
  • Sabin, K.Z., Jiang, P., Gearhart, M.D., Stewart, R., & Echeverri, K. (2019). AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Communications Biology, 2(1), 1-13. https://doi.org/10.1038/s42003-019-0335-4
  • Samuels, A.K., Weisrock, D.W., Smith, J.J., France, K.J., Walker, J.A., Putta, S., & Voss, S.R. (2005). Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. Gene, 349, 43-53. https://doi.org/10.1016/j.gene.2004.12.037
  • Shaffer, H.B., & McKnight, M.L. (1996). The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution, 50(1), 417-433. https://doi.org/10.1111/j.1558-5646.1996.tb04503.x
  • Sibai, M., Parlayan, C., Tuğlu, P., Öztürk, G., & Demircan, T. (2019). Integrative analysis of axolotl gene expression data from regenerative and wound healing limb tissues. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-56829-6
  • Siler, C.D., Freitas, E.S., Yuri, T., Souza, L., & Watters, J.L. (2021). Development and validation of four environmental DNA assays for species of conservation concern in the South-Central United States. Conservation Genetics Resources, 13(1), 35-40. https://doi.org/10.1007/S12686-020-01167-3
  • Sites Jr, J.W., & Marshall, J.C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution, 18(9), 462-470. https://doi.org/10.1016/S0169-5347(03)00184-8
  • Smith, M.A., Poyarkov Jr, N.A., & Hebert, P.D. (2008). DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Molecular Ecology Resources, 8(2), 235-246. https://doi.org/10.1111/j.1471-8286.2007.01964.x
  • Soriano-Lopez, M., Mota-Rojas, D., Iglesias, A.V., Ramirez-Necoechea, R., Olmos-Hernandez, A., Toca-Ramirez, J., & Alonso-Spilsbury, M. (2006). The Axolotl (Ambystoma mexicanum): Factors That Limit its Production and Alternatives for its Conservation. International Journal of Zoological Research 2(4), 362-368. https://doi.org/10.3923/ijzr.2006.362.368
  • Stamm, A., Strauß, S., Vogt, P., Scheper, T., & Pepelanova, I. (2018). Positive in vitro wound healing effects of functional inclusion bodies of a lipoxygenase from the Mexican axolotl. Microbial Cell Factories, 17(1), 1-9. https://doi.org/10.1186/s12934-018-0904-0
  • Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876. https://doi.org/10.1093/bioinformatics/btt499
  • Zhang, P., & Wake, D.B. (2009). Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 53(2), 492-508. https://doi.org/10.1016/j.ympev.2009.07.010
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Badel Arslan 0000-0002-0004-3567

Serdar Sönmez 0000-0002-4370-0539

Cengiz Korkmaz 0000-0001-7231-9983

Gülsemin Şen Ağılkaya 0000-0001-5108-0109

Gamze Ayar 0000-0002-5288-4755

Proje Numarası 2021-1-AP7-4362
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 27 Ekim 2021
Kabul Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Arslan, B., Sönmez, S., Korkmaz, C., Şen Ağılkaya, G., vd. (2021). Mersin Üniversitesi Su Ürünleri Fakültesi Uygulama Birimleri’nde Rejeneratif Tıp Araştırmalarında Model Organizma Olarak Yetiştirilen Ambystoma mexicanum’un DNA Barkodlaması ve Filogenisi. Commagene Journal of Biology, 5(2), 161-176. https://doi.org/10.31594/commagene.1015429
Creative Commons Lisansı Bu dergide yayınlanan eserler  Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.