İnceleme Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 36 - 52, 30.08.2024
https://doi.org/10.54569/aair.1483394

Öz

Kaynakça

  • Kampa M., Castanas E. “Human health effects of air pollution”. Environmental Pollution, (2008), 151, 362–367. https://doi.org/10.1016/J.ENVPOL.2007.06.012.
  • Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C. Radu R., Schepers D. et al. “The ERA5 global reanalysis”. Q. J. R. Meteorol. Soc., (2020), 146, 1999–2049. https://doi.org/10.1002/QJ.3803.
  • Adib R., Zervos A., Eckhart M., David M.E.A., Kirsty H., Peter H. Governments R. Bariloche F. “Renewables 2021: Global Status Report”. In REN21 Renewables Now, (2021). https://www.iea.org/reports/renewables-2021.
  • Eroglu H. “Effects of Covid-19 outbreak on environment and renewable energy sector”. Environ. Dev. Sustain., (2021), 23, 4782–4790. https://doi.org/10.1007/S10668-020-00837-4/FIGURES/5.
  • Xin-gang, Z.; You, Z. “Technological progress and industrial performance: A case study of solar photovoltaic industry”, Renew. Sustain. Energy Rev., 81 (2018) 929–936.
  • Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. “A review of deep learning for renewable energy forecasting”, Energy Convers. Manage., 198 (2019) 111799.
  • Mellit, A.; Benghanem, M.; Kalogirou, S. A. “Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure”, Renew. Energy, 32(2) (2007), 285–313.
  • Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; van Deventer, W.; Horan, B.; Stojcevski, A. “Forecasting of photovoltaic power generation and model optimization: A review” Renew. Sustain. Energy Rev. 18 (2018) 912–928.
  • Sobri, S.; Koohi-Kamali, S.; Rahim, N. A. “Solar photovoltaic generation forecasting methods: A review”, Energy Convers. Manage., 156 (2018) 459–497.
  • Pallathadka, H.; Ramirez-Asis, E.H.; Loli-Poma, T.P.; Kaliyaperumal, K.; Ventayen, R.J.M.; Naved, M. “Applications of artificial intelligence in business management, e-commerce and finance”, Mater. Today Proc. In press. (2021). https://doi.org/10.1016/J.MATPR.2021.06.419.
  • [11] Gonçalves, J.F.; Mendes, J.J.M.; Resende, M.G.C. “A genetic algorithm for the resource constrained multi-project scheduling problem”, European J. Oper. Res., 189(3) (2008) 1171–1190.
  • Giannakoudis, G.; Papadopoulos, A.I.; Seferlis, P.; Voutetakis, S. “Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage”, Int. J. Hydrogen Energy, 35(3) (2010) 872–891.
  • Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. “Multi-criteria optimal sizing of photovoltaic-wind turbine grid connected systems”, IEEE Trans. Energy Convers., 28 (2) (2013) 370–379.
  • Daut, M.A.M.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F. “Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review”, Renew. Sustain. Energy Rev., 70 (2017) 1108–1118.
  • Alshahrani, A.; Omer, S.; Su, Y.; Mohamed, E.; Alotaibi, S. “The technical challenges facing the integration of small-scale and large-scale PV systems into the grid: A critical review”, Electronics, 8: (2019) 1443; https://doi.org/10.3390/ELECTRONICS8121443.
  • Valer, L.R.; Manito, A.R.; Ribeiro, T.B.; Zilles, R.; Pinho, J.T. “Issues in PV systems applied to rural electrification in Brazil”. Renew. Sustain. Energy Rev., 78 (2017) 1033–1043. https://doi.org/10.1016/J.RSER.2017.05.016.
  • Bosman, L.B.; Leon-Salas, W.D.; Hutzel, W.; Soto, E.A. “PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities” Energies, 13 (2020) 1398. https://doi.org/10.3390/EN13061398.
  • Thi, H.; Thu, N.; Quoc Bao, P. “Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization”, Energy Rep., 8 (2022) 53–60.
  • Yang, J.X. “A novel short-term multi-input–multi-output prediction model of wind speed and wind power with LSSVM based on improved ant colony algorithm optimization”, Cluster Comput. 22(2) (2019) 3293–3300.
  • Neeraj, K.; Sudha, K.; Kusum, T. “Wind power prediction analysis by ANFIS, GA-ANFIS and PSO-ANFIS”, J. Info. Opt. Sci. 43(3) (2022) 481–486.
  • Wang, L.; Tao, R.; Hu, H.L. et al. “Effective wind power prediction using novel deep learning network: Stacked independently recurrent auto-encoder”, Renew. Energ., 164(C) (2021) 642–655.
  • Banik, A.; Behera, C.; Sarathkumar, T.V.; Goswami, A.K. “Uncertain wind power forecasting using LSTM-based prediction interval”, IET Renew. Power. Gener., 14 (2020) 2657–2667.
  • Semero, Y.K.; Zhang, J.H.; Zheng, D.H. “EMD-PSO-ANFIS-based hybrid approach for short-term load forecasting in microgrids”, IIET Gener. Transm. Distrib., 14(3) (2022) 470–475.
  • Márquez, F.P.G.; Gonzalo, A.P. “A comprehensive review of Artificial Intelligence and wind energy”, Archives of Computational Methods in Engineering, 29 (2021) 2935-2958. https://doi.org/10.1007/s11831-021-09678-4
  • Mellit, A.; Kalogirou, S. “Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions”, Renewable and Sustainable Energy Reviews, 143 (2021) 110889. https://doi.org/10.1016/j.rser.2021.110889
  • Mellit, A.; Kalogirou, S.A.; Hontoria, L.; Shaari, S. “Artificial intelligence techniques for sizing photovoltaic systems: A review”, Renewable and Sustainable Energy Reviews, 13 (2009) 406-419. https://doi.org/10.1016/j.rser.2008.01.006
  • Jha, S.K.; Bilalovic, J.; Jha, A.; Patel, N.; Zhang, H. “Renewable energy: Present research and future scope of Artificial Intelligence”, Renewable and Sustainable Energy Reviews, 77 (2017) 297-317. https://doi.org/10.1016/j.rser.2017.04.018
  • Belu, R. “Artificial intelligence techniques for solar energy and photovoltaic applications”, in: Pour, M.K.; Clarke, S.; Jennex, M.E.; Anttiroiko, A.V.; Kamel, S.; Lee, I.; Kisielnicki, J.; Gupta, A.; Slyke, C.V.; Wang, J.; Weerakkody, V. “Robotics: Concepts, methodologies, tools, and applications”, IGI Global, (2014) 1662-1720. https://doi.org/10.4018/978-1-4666-4607-0.ch081
  • Shehab, M.; Abualigah, L.; Shambour, Q.; Hashem, M.A.A.; Shambour, M.K.Y.; Salibi, A.I.A.; Gandomi, A.H. “Machine learning in medical applications: A review of state-of the-art methods” Computers in Biology and Medicine, 145 (2022) 105458. https://doi.org/10.1016/j.compbiomed.2022.105458
  • Friedman, J.; Hastie, T.; Tibshirani, R. “The elements of statistical learning”, New York: Springer, (2001).
  • Intellipat. “Supervised Learning vs Unsupervised Learning vs Reinforcement Learning”, (2019). Retrieved from: https://intellipaat.com/blog/supervised-learning-vs-unsupervised-learning-vs-reinforcement-learning/
  • Klass, L. “Machine Learning: Definition and Application Examples”, Spotlight Metal, (2018). Available at: https://www.spotlightmetal.com/machine-learning--definition-and-application-examples-a-746226/?cmp=go-ta-art-trf-SLM_DSA-20180820&gclid=CjwKCAjwkoz7BRBPEiwAeKw3q30qrjWJ-kiSAkfp6E6Oe_BxzFqk66RL3o2idJPKF1GBXlC94LgOuBoCTwMQAvD_BwE
  • Sutton, R.; Barto, A. “Reinforcement learning: An introduction”, Cambridge: MIT press, (1998).
  • Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. “Deep learning for visual understanding: A review”, Neurocomputing, 187 (2016) 27-48. https://doi.org/10.1016/j.neucom.2015.09.116
  • Shahri, O.A.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Shetwi, A.Q.A.; Begum, R.A.; Muhsen, N.F.O.A.; Soujeri, E. “Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review”, Journal of Cleaner Production, 284 (2021) 125465. https://doi.org/10.1016/j.jclepro.2020.125465
  • Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Sahoo, S.; Malik, A.; Blaabjerg, F. “A review on Artificial Intelligence applications for grid-connected solar photovoltaic systems” Energies, 14 (2021) 4690. https://doi.org/10.3390/en14154690
  • Benghanem, M.; Mellit, A.; Alamri S.N. “ANN-based modelling and estimation of daily global solar radiation data: A case study”, Energy Conversion and Management, 50 (2009) 1644–1655.
  • Esen, H.; Ozgen, F.; Esen, M.; Sengur, A. “Artificial neural network and wavelet neural network approaches for modelling of a solar air heater”, Expert Systems with Applications, 36 (2009) 11240–11248.
  • Fadare, D. “Modelling of solar energy potential in Nigeria using an artificial neural network model”, Applied Energy, 86(9) (2009) 1410–1422.
  • Mellit, A.; Pavan A.M. “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy”, Solar Energy, 84(5) (2010) 807-821.
  • Sanusi, Y. K.; Abisoye, S. G.; Awodugba, A. O. “Application of Neural Networks for Predicting the Optimal Sizing Parameters of Stand-Alone Photovoltaic Systems”, In SOP Transaction on Applied Physics, 1(1) (2014) 13-15.
  • Bartler, A.; Mauch, L.; Yang, B.; Reuter, M.; Stoicescu, L. “Automated detection of solar cell defects with deep learning”, In proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September (2018) 2035–2039. https://doi.org/10.23919/EUSIPCO.2018.8553025.
  • Deitsch, S.; Buerhop-Lutz, C.; Sovetkin, E.; Steland, A.; Maier, A.; Gallwitz, F.; Riess, C. “Segmentation of Photovoltaic Module Cells in Un-calibrated Electroluminescence Images”, Mach. Vis. Appl., 32 (2018); https://doi.org/10.1007/s00138-021-01191-9.
  • Duman, S.; Yorukeren, N.; Altas, I.H. “A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems”, Neural Comput. Appl., 29 (2018) 257–278. https://doi.org/10.1007/S00521-016-2447-9.
  • Farayola, A.M.; Hasan, A.N.; Ali, A. “Efficient photovoltaic MPPT system using coarse gaussian support vector machine and artificial neural network techniques”, Int. J. Innov. Comput. Inf. Control., 14 (2018) 323–339. https://doi.org/10.24507/IJICIC.14.01.323.
  • Kecman, V. “Support Vector Machines: An Introduction”, Springer: Berlin/Heidelberg, Germany; 177 (2005) 605. https://doi.org/10.1007/109846971.
  • Karimi, A.M.; Fada, J.S.; Liu, J.; Braid, J.L.; Koyuturk, M.; French, R.H. “Feature Extraction, Supervised and Unsupervised Machine Learning Classification of PV Cell Electroluminescence Images”, In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018-A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, 2018, Waikoloa, HI, USA, 10–15 June (2018) 418–424. https://doi.org/10.1109/PVSC.2018.8547739
  • Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. “CNN based automatic detection of photovoltaic cell defects in electroluminescence images”, Energy, 189 (2019) 116319. https://doi.org/10.1016/J.ENERGY.2019.116319.
  • Abdel-Nasser, M.; Mahmoud, K. “Accurate photovoltaic power forecasting models using deep LSTM-RNN”, Neural Comput. Appl., 31 (2019) 2727–2740. https://doi.org/10.1007/s00521-017-3225-z.
  • Karimi, A.M.; Fada, J.S.; Hossain, M.A.; Yang, S.; Peshek, T.J.; Braid, J.L.; French, R.H. “Automated Pipeline for Photovoltaic Module Electroluminescence Image Processing and Degradation Feature Classification”, IEEE J. Photovoltaics, 9 (2019) 1324–1335. https://doi.org/10.1109/JPHOTOV.2019.2920732.
  • Torres, J.F.; Troncoso, A.; Koprinska, I.; Wang, Z.; Martínez-Álvarez, F. “Big data solar power forecasting based on deep learning and multiple data sources”, Expert Syst., 36 (2019); https://doi.org/10.1111/EXSY.12394.
  • Yao, X.; Wang, Z.; Zhang, H. “A novel photovoltaic power forecasting model based on echo state network”, Neurocomputing, 325 (2019) 182–189. https://doi.org/10.1016/J.NEUCOM.2018.10.022.
  • Gallicchio, C.; Micheli, A. “Deep Echo State Network (Deep ESN): A Brief Survey”, arXiv, arXiv:abs/1712.04323, (2017).
  • Hinton, G.E. “A Practical Guide to Training Restricted Boltzmann Machines”, In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, (2012) 7700 Lecture N: 599–619. https://doi.org/10.1007/978-3-642-35289-8_32.
  • Jolliffe, I.T. “Principal Component Analysis”, Springer: Berlin/Heidelberg, Germany, (2002). https://doi.org/10.1007/B98835.
  • Davidon, W. “Variable Metric Method for Minimization”, Technical Report, Argonne National Laboratory (ANL): Lemont, IL, USA, (1959); https://doi.org/10.2172/4252678.
  • Al-Majidi, S.D.; Abbod, M.F.; Al-Raweshidy, H.S. “A particle swarm optimisation-trained feedforward neural network for predicting the Maximum Power Point of a photovoltaic array”, Eng. Appl. Artif. Intell., 92 (2020); https://doi.org/10.1016/J.ENGAPPAI.2020.103688.
  • Balzategui, J.; Eciolaza, L.; Arana-Arexolaleiba, N. “Defect detection on Polycrystalline solar cells using Electroluminescence and Fully Convolutional Neural Networks”, In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII (2020) Honolulu, HI, USA, 12–15 Janaury 2020: 949–953. https://doi.org/10.1109/SII46433.2020.9026211.
  • Mathias, N.; Shaikh, F.; Thakur, C.; Shetty, S.; Dumane, P.; Chavan, D.S. “Detection of Micro-Cracks in Electroluminescence Images of Photovoltaic Modules”, SSRN Electron. J., (2020). https://doi.org/10.2139/SSRN.3563821.
  • Niu, D.; Wang, K.; Sun, L.; Wu, J.; Xu, X. “Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study”, Appl. Soft Comput. J., 93 (2020); https://doi.org/10.1016/J.ASOC.2020.106389.
  • Breiman, L. “Random Forests”, Machine Learning, 45 (2001) 5–32. https://doi.org/10.1023/A:1010933404324.
  • Yeh, J.R.; Shieh, J.S.; Huang, N.E. “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method” Adv. Adapt. Data Anal., 2 (2011) 135–156. https://doi.org/10.1142/S1793536910000422.
  • Li, H.; Tan, Q. “A BP neural network based on improved particle swarm optimization and its application in reliability forecasting”, Res. J. Appl. Sci. Eng. Technol., 6 (2013) 1246–1251. https://doi.org/10.19026/RJASET.6.3939.
  • Jiao, B.; Lian, Z.; Gu, X. “A dynamic inertia weight particle swarm optimization algorithm”, Chaos Solitons Fractals, 37 (2008) 698–705. https://doi.org/10.1016/J.CHAOS.2006.09.063.
  • Wen, Y.; AlHakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.K.; Senjyu, T.; Paudyal, S.; Tseng, T.L. “Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty”, IEEE Trans. Neural Network Learn. Syst., 31 (2020) 1134–1144. https://doi.org/10.1109/TNNLS.2019.2918795.
  • Zhang, T.; Lv, C.; Ma, F.; Zhao, K.; Wang, H.; O’Hare, G.M. “A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform”, Neurocomputing, 397 (2020) 438–446. https://doi.org/10.1016/J.NEUCOM.2019.08.105.
  • Jiang, T.; Wang, D.; Ji, J.; Todo, Y.; Gao, S. “Single dendritic neuron with nonlinear computation capacity: A case study on XOR problem”. In Proceedings of 2015 IEEE International Conference on Progress in Informatics and Computing, PIC (2015), Nanjing, China, 18–20 December 2016: 20–24. https://doi.org/10.1109/PIC.2015.7489802.
  • Demirci, M.Y.; Besli, N.; Gümüsçü, A. “Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images”, Expert Syst. Appl., 175 (2021). https://doi.org/10.1016/j.eswa.2021.114810.
  • Sattar, M.A.E.; Sumaiti, A.A.; Ali, H.; Diab, A.A. “Marine predators’ algorithm for parameters estimation of photovoltaic modules considering various weather conditions”, Neural Comput. Appl., 33 (2021) 11799–11819. https://doi.org/10.1007/S00521-021-05822-0.
  • Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. “Marine Predators Algorithm: A nature-inspired metaheuristic”, Expert Syst. Appl., 152 (2020) 113377; https://doi.org/10.1016/J.ESWA.2020.113377.
  • Sibtain, M.; Xianshan, L.; Snoober, S.; Qurat-Ul-Ain; Muhammad, S. A.; Touseef, T.; Halit, A. “Multistage Hybrid Model ICEEMDAN-SE-VMD-RDPG for a Multivariate Solar Irradiance Forecasting”, IEEE Access, 9 (2021) 37334-37363; https://doi.org/10.1109/ACCESS.2021.3062764
  • Su, B.; Chen, H.; Chen, P.; Bian, G.; Liu, K.; Liu, W. “Deep Learning-Based Solar-Cell Manufacturing Defect Detection with Complementary Attention Network”, IEEE Trans. Ind. Inform., 17 (2021) 4084–4095; https://doi.org/10.1109/TII.2020.3008021.
  • Girshick, R. “Fast R-CNN”, In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December (2015) 1440–1448; https://doi.org/10.1109/ICCV.2015.169.
  • Lee, J. Y.; Shin, D. H. “Development of Solar Power Generation Prediction System using Artificial Intelligence”, In Proceedings of the First Australian International Conference on Industrial Engineering and Operations Management, Sydney, Australia, December 20-21, (2022) 1649-1654
  • Martinez Lopez, V.A.; Žindžiute, U.; Ziar, H.; Zeman, M.; Isabella, O. “Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm” Energies, 15 (2022) 7562; https://doi.org/10.3390/en15207562
  • Smail, C.; Saad, M.; El Hammoumi, A.; Aissa, C.; Abou Soufiane, B.; El Ghzizal, A.; Aziz, D.; Mohamed, A.; Askar, S. S. “A novel hybrid GWO–PSO‑based maximum power point tracking for photovoltaic systems operating under partial shading conditions”, Scientific Reports, 12 (2022) 10637; https://doi.org/10.1038/s41598-022-14733-6
  • Sumathi, S.; Abitha, S. “A Novel Method for Solar Water Pumping System Using Machine Learning Techniques”, In Third International Conference on Advances in Physical Sciences and Materials: ICAPSM 2022, AIP Conf. Proc. 2901, 070001-1–070001-11; https://doi.org/10.1063/5.0179061
  • Sangsang, S.; Sasmowiyono, S.; Fadlil, A.; Subrata, A. C. “Optimum solar energy harvesting system using artificial intelligence”, ETRI Journal, (2022) 1–11; https://doi.org/10.4218/etrij.2022-0184.
  • Abubakar, A.; Jibril, M.M.; Almeida, C.F.M.; Gemignani, M.; Yahya, M.N.; Abba, S.I. “A Novel Hybrid Optimization Approach for Fault Detection in Photovoltaic Arrays and Inverters Using AI and Statistical Learning Techniques: A Focus on Sustainable Environment”, Processes, 11 (2023) 2549; https://doi.org/10.3390/pr11092549
  • Alba, A.; Anders, V. L.; Miro, Z.; Hesan, Z.; Olindo, I. “Effect of Climate on Photovoltaic Yield Prediction Using Machine Learning Models”, Global Challenges, 7 (2023) 2200166; https//:doi.org/10.1002/gch2.202200166
  • Arash, M.; Hamed, M.; Behnam, M. I.; António, P. A.; Amjad, A. M.; Zulkurnain, A. “Generalized global solar radiation forecasting model via cyber‑secure deep federated learning”, Environmental Science and Pollution Research, (2023); https://doi.org/10.1007/s11356-023-30224-1 2023
  • Azad, M.A.; Sajid, I.; Lu, S.-D.; Sarwar, A.; Tariq, M.; Ahmad, S.; Liu, H.-D.; Lin, C.-H.; Mahmoud, H.A. “Energy Valley Optimizer (EVO) for Tracking the Global Maximum Power Point in a Solar PV System under Shading”, Processes, 11 (2023) 2986; https://doi.org/10.3390/pr11102986
  • Bo, L.; Zhan, S.; Zhihua, Y.; Xiuzhu, W. “Wavelet neural network-based distributed photovoltaic grid-connected power prediction method”, In Proc. SPIE 12788, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), 1278825 (25 September 2023), (2023); https://doi.org/10.1117/12.3004356
  • Dae, G. K.; Yean-Uk, K.; Shinwoo, H.; Kwang, S. K.; Junhwan, K.; Chung-Kuen, L.; Atsushi, M.; Robert, M. B.; David, H. F. “Identification of a spatial distribution threshold for the development of a solar radiation model using deep neural networks”, Environ. Res. Lett., 18 (2023) 104020; https://doi.org/10.1088/1748-9326/acf6d4
  • John, I. S.; Abubakar, A.; Gbenga A. O. “Maximum power point tracking of a partially shaded solar photovoltaic system using a modified firefly algorithm‑based controller”, Journal of Electrical Systems and Inf. Technol., 10(48) (2023) 1-16; https://doi.org/10.1186/s43067-023-00114-0
  • Khamees, A.S.; Sayad, T.; Morsy, M.; Ali Rahoma, U.; Hassan, A.H. “Evaluation of three radiation Schemes of the WRF-Solar model for global surface solar radiation forecast: A case study in Egypt”, Advances in Space Research, (2023); https://doi.org/10.1016/j.asr.2023.12.010
  • Lee, J.; Choi, J.; Park, W.; Lee, I. “A Dual-Stage Solar Power Prediction Model That Reflects Uncertainties in Weather Forecasts”, Energies, 16 (2023) 7321; https://doi.org/10.3390/en16217321
  • Lu, Y. B.; Wang, L. C.; Zhou, J.J.; Niu, Z.G.; Zhang, M.; Qin, W.M. “Assessment of the high-resolution estimations of global and diffuse solar radiation using WRF-Solar”, Advances in Climate Change Research, 14 (2023) 720-731. https://doi.org/10.1016/j.accre.2023.09.009
  • Macaire, J.; Zermani, S.; Linguet, L. “New Feature Selection Approach for Photovoltaic Power Forecasting Using KCDE”, Energies, 16 (2023) 6842. https://doi.org/10.3390/en16196842
  • Qin, S.; Li, M.; Guanjun, L.; Jianzhong, Z.; Yongchuan, Z.; Pinan, R. “Short-Term Load Forecasting Based on Multi-Scale Ensemble Deep Learning Neural Network”, IEEE Access, 11 (2023) 111963-111975, https://doi.org/10.1109/ACCESS.2023.3322167
  • Ribeiro, R.; Fanzeres, B. “Identifying representative days of solar irradiance and wind speed in Brazil using machine learning techniques”, Energy and AI, (2023). https://doi.org/10.1016/j.egyai.2023.100320.
  • Sebastian, Z.; Dazhi, Y.; Tomas, L.; Pietro, E. C. “Site adaptation with machine learning for a Northern Europe gridded global solar irradiance product”, Energy and AI, (2023). https://doi.org/10.1016/j.egyai.2023.100331
  • Sheng, W.; Li, R.; Shi, L.; Lu, T. “Distributed photovoltaic short-term power forecasting using hybrid competitive particle swarm optimization support vector machines based on spatial correlation analysis”, IET Renew. Power Gener., (2023) 1–14. https://doi.org/10.1049/rpg2.12860
  • Shihan, L.; Chun, Y.; Yuan, G. “Short-term photovoltaic power prediction model based on quadratic frequency domain decomposition algorithm for neural networks”, In Proc. SPIE 12788, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), 1278811 (25 September 2023); https://doi.org/10.1117/12.3004418
  • Wen, S.-B.; Bhaskar, A. “The Shockley–Queisser Efficiency Limit of Solar Thermophotovoltaic (STPV) Cells using Different Photovoltaic Cells and a Radiation Shield Considering the Étendue of Solar Radiation”, Energies, 16 (2023) 7085. https://doi.org/10.3390/en16207085
  • Zhao, H.; Zhu, D.; Yang, Y.; Li, Q.; Zhang, E. “Study on photovoltaic power forecasting model based on peak sunshine hours and sunshine duration”, Energy Sci. Eng., (2023) 1‐11. https://doi.org/10.1002/ese3.1598
  • Zhu, J.; Zhao, Z.; Zheng, X.; An, Z.; Guo, Q.; Li, Z.; Sun, J.; Guo, Y. “Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer”; Energies, 16 (2023) 7610. https://doi.org/10.3390/en16227610
  • Li, G.; Ding, C.; Zhao, N.; Wei, J.; Guo, Y.; Meng, C.; Huang, K.; Zhu, R. “Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network”, Energy, 293 (2024) 130621. https://doi.org/10.1016/j.energy.2024.130621
  • Liu, J.; Li, T. “Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model”, Energy, 293 (2024) 130468. https://doi.org/10.1016/j.energy.2024.130468
  • Murugan, R.; Arunachalam, S.; Hussein, M. R.; Seyedali, M. “Estimation of photovoltaic models using an enhanced Henry gas solubility optimization algorithm with first-order adaptive damping Berndt-Hall-Hall-Hausman method”, Energy Conversion and Management, 299 (2024) 117831, https://doi.org/10.1016/j.enconman.2023.117831
  • Nicoletti, F.; Bevilacqua, P. “Hourly Photovoltaic Production Prediction using Numerical Weather Data and Neural Networks for Solar Energy Decision Support”, Energies, 17 (2024) 466. https://doi.org/10.3390/en17020466
  • Wang, J.; Si, Y.; Zhu, Y.; Zhang, K.; Yin, S.; Liu, B. “Cyberattack detection for electricity theft in smart grids via stacking ensemble GRU optimization algorithm using federated learning framework”, Electrical Power and Energy Systems, 157 (2024) 109848; https://doi.org/10.1016/j.ijepes.2024.109848

Recent Progress on Applications of Artificial Intelligence for Sustainability of Solar Energy Technologies: An Extensive Review

Yıl 2024, , 36 - 52, 30.08.2024
https://doi.org/10.54569/aair.1483394

Öz

Green energy sources are most promising energy sources in the globe, as they are non-pollutant sources. Solar energy sources are among green energy sources that are free and abundant in nature, yet solar energy sources have some shortcoming such as faults on the solar PV modules, improper maintenance and some climatic and environmental impacts. Artificial intelligences are employed to solve most of these shortcoming like prediction of the solar irradiance of the specific sites, parameters estimation on the solar PV modules, fault detection on the solar PV modules surfaces and forecasting of solar PV power output. This paper presents extensive review on application of artificial intelligences to solve problems related to solar energy systems from 2009 to 2024. It was found that from most of the literatures, artificial intelligent algorithms were more accurate and efficient than the conventional methods and it has an ability to solve complex and non-linear data. This work will help scholars to explore the relationship between solar energy technologies and artificial intelligences.

Kaynakça

  • Kampa M., Castanas E. “Human health effects of air pollution”. Environmental Pollution, (2008), 151, 362–367. https://doi.org/10.1016/J.ENVPOL.2007.06.012.
  • Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C. Radu R., Schepers D. et al. “The ERA5 global reanalysis”. Q. J. R. Meteorol. Soc., (2020), 146, 1999–2049. https://doi.org/10.1002/QJ.3803.
  • Adib R., Zervos A., Eckhart M., David M.E.A., Kirsty H., Peter H. Governments R. Bariloche F. “Renewables 2021: Global Status Report”. In REN21 Renewables Now, (2021). https://www.iea.org/reports/renewables-2021.
  • Eroglu H. “Effects of Covid-19 outbreak on environment and renewable energy sector”. Environ. Dev. Sustain., (2021), 23, 4782–4790. https://doi.org/10.1007/S10668-020-00837-4/FIGURES/5.
  • Xin-gang, Z.; You, Z. “Technological progress and industrial performance: A case study of solar photovoltaic industry”, Renew. Sustain. Energy Rev., 81 (2018) 929–936.
  • Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. “A review of deep learning for renewable energy forecasting”, Energy Convers. Manage., 198 (2019) 111799.
  • Mellit, A.; Benghanem, M.; Kalogirou, S. A. “Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure”, Renew. Energy, 32(2) (2007), 285–313.
  • Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; van Deventer, W.; Horan, B.; Stojcevski, A. “Forecasting of photovoltaic power generation and model optimization: A review” Renew. Sustain. Energy Rev. 18 (2018) 912–928.
  • Sobri, S.; Koohi-Kamali, S.; Rahim, N. A. “Solar photovoltaic generation forecasting methods: A review”, Energy Convers. Manage., 156 (2018) 459–497.
  • Pallathadka, H.; Ramirez-Asis, E.H.; Loli-Poma, T.P.; Kaliyaperumal, K.; Ventayen, R.J.M.; Naved, M. “Applications of artificial intelligence in business management, e-commerce and finance”, Mater. Today Proc. In press. (2021). https://doi.org/10.1016/J.MATPR.2021.06.419.
  • [11] Gonçalves, J.F.; Mendes, J.J.M.; Resende, M.G.C. “A genetic algorithm for the resource constrained multi-project scheduling problem”, European J. Oper. Res., 189(3) (2008) 1171–1190.
  • Giannakoudis, G.; Papadopoulos, A.I.; Seferlis, P.; Voutetakis, S. “Optimum design and operation under uncertainty of power systems using renewable energy sources and hydrogen storage”, Int. J. Hydrogen Energy, 35(3) (2010) 872–891.
  • Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. “Multi-criteria optimal sizing of photovoltaic-wind turbine grid connected systems”, IEEE Trans. Energy Convers., 28 (2) (2013) 370–379.
  • Daut, M.A.M.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F. “Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review”, Renew. Sustain. Energy Rev., 70 (2017) 1108–1118.
  • Alshahrani, A.; Omer, S.; Su, Y.; Mohamed, E.; Alotaibi, S. “The technical challenges facing the integration of small-scale and large-scale PV systems into the grid: A critical review”, Electronics, 8: (2019) 1443; https://doi.org/10.3390/ELECTRONICS8121443.
  • Valer, L.R.; Manito, A.R.; Ribeiro, T.B.; Zilles, R.; Pinho, J.T. “Issues in PV systems applied to rural electrification in Brazil”. Renew. Sustain. Energy Rev., 78 (2017) 1033–1043. https://doi.org/10.1016/J.RSER.2017.05.016.
  • Bosman, L.B.; Leon-Salas, W.D.; Hutzel, W.; Soto, E.A. “PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities” Energies, 13 (2020) 1398. https://doi.org/10.3390/EN13061398.
  • Thi, H.; Thu, N.; Quoc Bao, P. “Hourly day ahead wind speed forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM embedded with GA optimization”, Energy Rep., 8 (2022) 53–60.
  • Yang, J.X. “A novel short-term multi-input–multi-output prediction model of wind speed and wind power with LSSVM based on improved ant colony algorithm optimization”, Cluster Comput. 22(2) (2019) 3293–3300.
  • Neeraj, K.; Sudha, K.; Kusum, T. “Wind power prediction analysis by ANFIS, GA-ANFIS and PSO-ANFIS”, J. Info. Opt. Sci. 43(3) (2022) 481–486.
  • Wang, L.; Tao, R.; Hu, H.L. et al. “Effective wind power prediction using novel deep learning network: Stacked independently recurrent auto-encoder”, Renew. Energ., 164(C) (2021) 642–655.
  • Banik, A.; Behera, C.; Sarathkumar, T.V.; Goswami, A.K. “Uncertain wind power forecasting using LSTM-based prediction interval”, IET Renew. Power. Gener., 14 (2020) 2657–2667.
  • Semero, Y.K.; Zhang, J.H.; Zheng, D.H. “EMD-PSO-ANFIS-based hybrid approach for short-term load forecasting in microgrids”, IIET Gener. Transm. Distrib., 14(3) (2022) 470–475.
  • Márquez, F.P.G.; Gonzalo, A.P. “A comprehensive review of Artificial Intelligence and wind energy”, Archives of Computational Methods in Engineering, 29 (2021) 2935-2958. https://doi.org/10.1007/s11831-021-09678-4
  • Mellit, A.; Kalogirou, S. “Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions”, Renewable and Sustainable Energy Reviews, 143 (2021) 110889. https://doi.org/10.1016/j.rser.2021.110889
  • Mellit, A.; Kalogirou, S.A.; Hontoria, L.; Shaari, S. “Artificial intelligence techniques for sizing photovoltaic systems: A review”, Renewable and Sustainable Energy Reviews, 13 (2009) 406-419. https://doi.org/10.1016/j.rser.2008.01.006
  • Jha, S.K.; Bilalovic, J.; Jha, A.; Patel, N.; Zhang, H. “Renewable energy: Present research and future scope of Artificial Intelligence”, Renewable and Sustainable Energy Reviews, 77 (2017) 297-317. https://doi.org/10.1016/j.rser.2017.04.018
  • Belu, R. “Artificial intelligence techniques for solar energy and photovoltaic applications”, in: Pour, M.K.; Clarke, S.; Jennex, M.E.; Anttiroiko, A.V.; Kamel, S.; Lee, I.; Kisielnicki, J.; Gupta, A.; Slyke, C.V.; Wang, J.; Weerakkody, V. “Robotics: Concepts, methodologies, tools, and applications”, IGI Global, (2014) 1662-1720. https://doi.org/10.4018/978-1-4666-4607-0.ch081
  • Shehab, M.; Abualigah, L.; Shambour, Q.; Hashem, M.A.A.; Shambour, M.K.Y.; Salibi, A.I.A.; Gandomi, A.H. “Machine learning in medical applications: A review of state-of the-art methods” Computers in Biology and Medicine, 145 (2022) 105458. https://doi.org/10.1016/j.compbiomed.2022.105458
  • Friedman, J.; Hastie, T.; Tibshirani, R. “The elements of statistical learning”, New York: Springer, (2001).
  • Intellipat. “Supervised Learning vs Unsupervised Learning vs Reinforcement Learning”, (2019). Retrieved from: https://intellipaat.com/blog/supervised-learning-vs-unsupervised-learning-vs-reinforcement-learning/
  • Klass, L. “Machine Learning: Definition and Application Examples”, Spotlight Metal, (2018). Available at: https://www.spotlightmetal.com/machine-learning--definition-and-application-examples-a-746226/?cmp=go-ta-art-trf-SLM_DSA-20180820&gclid=CjwKCAjwkoz7BRBPEiwAeKw3q30qrjWJ-kiSAkfp6E6Oe_BxzFqk66RL3o2idJPKF1GBXlC94LgOuBoCTwMQAvD_BwE
  • Sutton, R.; Barto, A. “Reinforcement learning: An introduction”, Cambridge: MIT press, (1998).
  • Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. “Deep learning for visual understanding: A review”, Neurocomputing, 187 (2016) 27-48. https://doi.org/10.1016/j.neucom.2015.09.116
  • Shahri, O.A.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Shetwi, A.Q.A.; Begum, R.A.; Muhsen, N.F.O.A.; Soujeri, E. “Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review”, Journal of Cleaner Production, 284 (2021) 125465. https://doi.org/10.1016/j.jclepro.2020.125465
  • Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Sahoo, S.; Malik, A.; Blaabjerg, F. “A review on Artificial Intelligence applications for grid-connected solar photovoltaic systems” Energies, 14 (2021) 4690. https://doi.org/10.3390/en14154690
  • Benghanem, M.; Mellit, A.; Alamri S.N. “ANN-based modelling and estimation of daily global solar radiation data: A case study”, Energy Conversion and Management, 50 (2009) 1644–1655.
  • Esen, H.; Ozgen, F.; Esen, M.; Sengur, A. “Artificial neural network and wavelet neural network approaches for modelling of a solar air heater”, Expert Systems with Applications, 36 (2009) 11240–11248.
  • Fadare, D. “Modelling of solar energy potential in Nigeria using an artificial neural network model”, Applied Energy, 86(9) (2009) 1410–1422.
  • Mellit, A.; Pavan A.M. “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy”, Solar Energy, 84(5) (2010) 807-821.
  • Sanusi, Y. K.; Abisoye, S. G.; Awodugba, A. O. “Application of Neural Networks for Predicting the Optimal Sizing Parameters of Stand-Alone Photovoltaic Systems”, In SOP Transaction on Applied Physics, 1(1) (2014) 13-15.
  • Bartler, A.; Mauch, L.; Yang, B.; Reuter, M.; Stoicescu, L. “Automated detection of solar cell defects with deep learning”, In proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September (2018) 2035–2039. https://doi.org/10.23919/EUSIPCO.2018.8553025.
  • Deitsch, S.; Buerhop-Lutz, C.; Sovetkin, E.; Steland, A.; Maier, A.; Gallwitz, F.; Riess, C. “Segmentation of Photovoltaic Module Cells in Un-calibrated Electroluminescence Images”, Mach. Vis. Appl., 32 (2018); https://doi.org/10.1007/s00138-021-01191-9.
  • Duman, S.; Yorukeren, N.; Altas, I.H. “A novel MPPT algorithm based on optimized artificial neural network by using FPSOGSA for standalone photovoltaic energy systems”, Neural Comput. Appl., 29 (2018) 257–278. https://doi.org/10.1007/S00521-016-2447-9.
  • Farayola, A.M.; Hasan, A.N.; Ali, A. “Efficient photovoltaic MPPT system using coarse gaussian support vector machine and artificial neural network techniques”, Int. J. Innov. Comput. Inf. Control., 14 (2018) 323–339. https://doi.org/10.24507/IJICIC.14.01.323.
  • Kecman, V. “Support Vector Machines: An Introduction”, Springer: Berlin/Heidelberg, Germany; 177 (2005) 605. https://doi.org/10.1007/109846971.
  • Karimi, A.M.; Fada, J.S.; Liu, J.; Braid, J.L.; Koyuturk, M.; French, R.H. “Feature Extraction, Supervised and Unsupervised Machine Learning Classification of PV Cell Electroluminescence Images”, In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018-A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, 2018, Waikoloa, HI, USA, 10–15 June (2018) 418–424. https://doi.org/10.1109/PVSC.2018.8547739
  • Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. “CNN based automatic detection of photovoltaic cell defects in electroluminescence images”, Energy, 189 (2019) 116319. https://doi.org/10.1016/J.ENERGY.2019.116319.
  • Abdel-Nasser, M.; Mahmoud, K. “Accurate photovoltaic power forecasting models using deep LSTM-RNN”, Neural Comput. Appl., 31 (2019) 2727–2740. https://doi.org/10.1007/s00521-017-3225-z.
  • Karimi, A.M.; Fada, J.S.; Hossain, M.A.; Yang, S.; Peshek, T.J.; Braid, J.L.; French, R.H. “Automated Pipeline for Photovoltaic Module Electroluminescence Image Processing and Degradation Feature Classification”, IEEE J. Photovoltaics, 9 (2019) 1324–1335. https://doi.org/10.1109/JPHOTOV.2019.2920732.
  • Torres, J.F.; Troncoso, A.; Koprinska, I.; Wang, Z.; Martínez-Álvarez, F. “Big data solar power forecasting based on deep learning and multiple data sources”, Expert Syst., 36 (2019); https://doi.org/10.1111/EXSY.12394.
  • Yao, X.; Wang, Z.; Zhang, H. “A novel photovoltaic power forecasting model based on echo state network”, Neurocomputing, 325 (2019) 182–189. https://doi.org/10.1016/J.NEUCOM.2018.10.022.
  • Gallicchio, C.; Micheli, A. “Deep Echo State Network (Deep ESN): A Brief Survey”, arXiv, arXiv:abs/1712.04323, (2017).
  • Hinton, G.E. “A Practical Guide to Training Restricted Boltzmann Machines”, In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, (2012) 7700 Lecture N: 599–619. https://doi.org/10.1007/978-3-642-35289-8_32.
  • Jolliffe, I.T. “Principal Component Analysis”, Springer: Berlin/Heidelberg, Germany, (2002). https://doi.org/10.1007/B98835.
  • Davidon, W. “Variable Metric Method for Minimization”, Technical Report, Argonne National Laboratory (ANL): Lemont, IL, USA, (1959); https://doi.org/10.2172/4252678.
  • Al-Majidi, S.D.; Abbod, M.F.; Al-Raweshidy, H.S. “A particle swarm optimisation-trained feedforward neural network for predicting the Maximum Power Point of a photovoltaic array”, Eng. Appl. Artif. Intell., 92 (2020); https://doi.org/10.1016/J.ENGAPPAI.2020.103688.
  • Balzategui, J.; Eciolaza, L.; Arana-Arexolaleiba, N. “Defect detection on Polycrystalline solar cells using Electroluminescence and Fully Convolutional Neural Networks”, In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration, SII (2020) Honolulu, HI, USA, 12–15 Janaury 2020: 949–953. https://doi.org/10.1109/SII46433.2020.9026211.
  • Mathias, N.; Shaikh, F.; Thakur, C.; Shetty, S.; Dumane, P.; Chavan, D.S. “Detection of Micro-Cracks in Electroluminescence Images of Photovoltaic Modules”, SSRN Electron. J., (2020). https://doi.org/10.2139/SSRN.3563821.
  • Niu, D.; Wang, K.; Sun, L.; Wu, J.; Xu, X. “Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study”, Appl. Soft Comput. J., 93 (2020); https://doi.org/10.1016/J.ASOC.2020.106389.
  • Breiman, L. “Random Forests”, Machine Learning, 45 (2001) 5–32. https://doi.org/10.1023/A:1010933404324.
  • Yeh, J.R.; Shieh, J.S.; Huang, N.E. “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method” Adv. Adapt. Data Anal., 2 (2011) 135–156. https://doi.org/10.1142/S1793536910000422.
  • Li, H.; Tan, Q. “A BP neural network based on improved particle swarm optimization and its application in reliability forecasting”, Res. J. Appl. Sci. Eng. Technol., 6 (2013) 1246–1251. https://doi.org/10.19026/RJASET.6.3939.
  • Jiao, B.; Lian, Z.; Gu, X. “A dynamic inertia weight particle swarm optimization algorithm”, Chaos Solitons Fractals, 37 (2008) 698–705. https://doi.org/10.1016/J.CHAOS.2006.09.063.
  • Wen, Y.; AlHakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.K.; Senjyu, T.; Paudyal, S.; Tseng, T.L. “Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty”, IEEE Trans. Neural Network Learn. Syst., 31 (2020) 1134–1144. https://doi.org/10.1109/TNNLS.2019.2918795.
  • Zhang, T.; Lv, C.; Ma, F.; Zhao, K.; Wang, H.; O’Hare, G.M. “A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform”, Neurocomputing, 397 (2020) 438–446. https://doi.org/10.1016/J.NEUCOM.2019.08.105.
  • Jiang, T.; Wang, D.; Ji, J.; Todo, Y.; Gao, S. “Single dendritic neuron with nonlinear computation capacity: A case study on XOR problem”. In Proceedings of 2015 IEEE International Conference on Progress in Informatics and Computing, PIC (2015), Nanjing, China, 18–20 December 2016: 20–24. https://doi.org/10.1109/PIC.2015.7489802.
  • Demirci, M.Y.; Besli, N.; Gümüsçü, A. “Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in Electroluminescence images”, Expert Syst. Appl., 175 (2021). https://doi.org/10.1016/j.eswa.2021.114810.
  • Sattar, M.A.E.; Sumaiti, A.A.; Ali, H.; Diab, A.A. “Marine predators’ algorithm for parameters estimation of photovoltaic modules considering various weather conditions”, Neural Comput. Appl., 33 (2021) 11799–11819. https://doi.org/10.1007/S00521-021-05822-0.
  • Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. “Marine Predators Algorithm: A nature-inspired metaheuristic”, Expert Syst. Appl., 152 (2020) 113377; https://doi.org/10.1016/J.ESWA.2020.113377.
  • Sibtain, M.; Xianshan, L.; Snoober, S.; Qurat-Ul-Ain; Muhammad, S. A.; Touseef, T.; Halit, A. “Multistage Hybrid Model ICEEMDAN-SE-VMD-RDPG for a Multivariate Solar Irradiance Forecasting”, IEEE Access, 9 (2021) 37334-37363; https://doi.org/10.1109/ACCESS.2021.3062764
  • Su, B.; Chen, H.; Chen, P.; Bian, G.; Liu, K.; Liu, W. “Deep Learning-Based Solar-Cell Manufacturing Defect Detection with Complementary Attention Network”, IEEE Trans. Ind. Inform., 17 (2021) 4084–4095; https://doi.org/10.1109/TII.2020.3008021.
  • Girshick, R. “Fast R-CNN”, In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December (2015) 1440–1448; https://doi.org/10.1109/ICCV.2015.169.
  • Lee, J. Y.; Shin, D. H. “Development of Solar Power Generation Prediction System using Artificial Intelligence”, In Proceedings of the First Australian International Conference on Industrial Engineering and Operations Management, Sydney, Australia, December 20-21, (2022) 1649-1654
  • Martinez Lopez, V.A.; Žindžiute, U.; Ziar, H.; Zeman, M.; Isabella, O. “Study on the Effect of Irradiance Variability on the Efficiency of the Perturb-and-Observe Maximum Power Point Tracking Algorithm” Energies, 15 (2022) 7562; https://doi.org/10.3390/en15207562
  • Smail, C.; Saad, M.; El Hammoumi, A.; Aissa, C.; Abou Soufiane, B.; El Ghzizal, A.; Aziz, D.; Mohamed, A.; Askar, S. S. “A novel hybrid GWO–PSO‑based maximum power point tracking for photovoltaic systems operating under partial shading conditions”, Scientific Reports, 12 (2022) 10637; https://doi.org/10.1038/s41598-022-14733-6
  • Sumathi, S.; Abitha, S. “A Novel Method for Solar Water Pumping System Using Machine Learning Techniques”, In Third International Conference on Advances in Physical Sciences and Materials: ICAPSM 2022, AIP Conf. Proc. 2901, 070001-1–070001-11; https://doi.org/10.1063/5.0179061
  • Sangsang, S.; Sasmowiyono, S.; Fadlil, A.; Subrata, A. C. “Optimum solar energy harvesting system using artificial intelligence”, ETRI Journal, (2022) 1–11; https://doi.org/10.4218/etrij.2022-0184.
  • Abubakar, A.; Jibril, M.M.; Almeida, C.F.M.; Gemignani, M.; Yahya, M.N.; Abba, S.I. “A Novel Hybrid Optimization Approach for Fault Detection in Photovoltaic Arrays and Inverters Using AI and Statistical Learning Techniques: A Focus on Sustainable Environment”, Processes, 11 (2023) 2549; https://doi.org/10.3390/pr11092549
  • Alba, A.; Anders, V. L.; Miro, Z.; Hesan, Z.; Olindo, I. “Effect of Climate on Photovoltaic Yield Prediction Using Machine Learning Models”, Global Challenges, 7 (2023) 2200166; https//:doi.org/10.1002/gch2.202200166
  • Arash, M.; Hamed, M.; Behnam, M. I.; António, P. A.; Amjad, A. M.; Zulkurnain, A. “Generalized global solar radiation forecasting model via cyber‑secure deep federated learning”, Environmental Science and Pollution Research, (2023); https://doi.org/10.1007/s11356-023-30224-1 2023
  • Azad, M.A.; Sajid, I.; Lu, S.-D.; Sarwar, A.; Tariq, M.; Ahmad, S.; Liu, H.-D.; Lin, C.-H.; Mahmoud, H.A. “Energy Valley Optimizer (EVO) for Tracking the Global Maximum Power Point in a Solar PV System under Shading”, Processes, 11 (2023) 2986; https://doi.org/10.3390/pr11102986
  • Bo, L.; Zhan, S.; Zhihua, Y.; Xiuzhu, W. “Wavelet neural network-based distributed photovoltaic grid-connected power prediction method”, In Proc. SPIE 12788, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), 1278825 (25 September 2023), (2023); https://doi.org/10.1117/12.3004356
  • Dae, G. K.; Yean-Uk, K.; Shinwoo, H.; Kwang, S. K.; Junhwan, K.; Chung-Kuen, L.; Atsushi, M.; Robert, M. B.; David, H. F. “Identification of a spatial distribution threshold for the development of a solar radiation model using deep neural networks”, Environ. Res. Lett., 18 (2023) 104020; https://doi.org/10.1088/1748-9326/acf6d4
  • John, I. S.; Abubakar, A.; Gbenga A. O. “Maximum power point tracking of a partially shaded solar photovoltaic system using a modified firefly algorithm‑based controller”, Journal of Electrical Systems and Inf. Technol., 10(48) (2023) 1-16; https://doi.org/10.1186/s43067-023-00114-0
  • Khamees, A.S.; Sayad, T.; Morsy, M.; Ali Rahoma, U.; Hassan, A.H. “Evaluation of three radiation Schemes of the WRF-Solar model for global surface solar radiation forecast: A case study in Egypt”, Advances in Space Research, (2023); https://doi.org/10.1016/j.asr.2023.12.010
  • Lee, J.; Choi, J.; Park, W.; Lee, I. “A Dual-Stage Solar Power Prediction Model That Reflects Uncertainties in Weather Forecasts”, Energies, 16 (2023) 7321; https://doi.org/10.3390/en16217321
  • Lu, Y. B.; Wang, L. C.; Zhou, J.J.; Niu, Z.G.; Zhang, M.; Qin, W.M. “Assessment of the high-resolution estimations of global and diffuse solar radiation using WRF-Solar”, Advances in Climate Change Research, 14 (2023) 720-731. https://doi.org/10.1016/j.accre.2023.09.009
  • Macaire, J.; Zermani, S.; Linguet, L. “New Feature Selection Approach for Photovoltaic Power Forecasting Using KCDE”, Energies, 16 (2023) 6842. https://doi.org/10.3390/en16196842
  • Qin, S.; Li, M.; Guanjun, L.; Jianzhong, Z.; Yongchuan, Z.; Pinan, R. “Short-Term Load Forecasting Based on Multi-Scale Ensemble Deep Learning Neural Network”, IEEE Access, 11 (2023) 111963-111975, https://doi.org/10.1109/ACCESS.2023.3322167
  • Ribeiro, R.; Fanzeres, B. “Identifying representative days of solar irradiance and wind speed in Brazil using machine learning techniques”, Energy and AI, (2023). https://doi.org/10.1016/j.egyai.2023.100320.
  • Sebastian, Z.; Dazhi, Y.; Tomas, L.; Pietro, E. C. “Site adaptation with machine learning for a Northern Europe gridded global solar irradiance product”, Energy and AI, (2023). https://doi.org/10.1016/j.egyai.2023.100331
  • Sheng, W.; Li, R.; Shi, L.; Lu, T. “Distributed photovoltaic short-term power forecasting using hybrid competitive particle swarm optimization support vector machines based on spatial correlation analysis”, IET Renew. Power Gener., (2023) 1–14. https://doi.org/10.1049/rpg2.12860
  • Shihan, L.; Chun, Y.; Yuan, G. “Short-term photovoltaic power prediction model based on quadratic frequency domain decomposition algorithm for neural networks”, In Proc. SPIE 12788, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), 1278811 (25 September 2023); https://doi.org/10.1117/12.3004418
  • Wen, S.-B.; Bhaskar, A. “The Shockley–Queisser Efficiency Limit of Solar Thermophotovoltaic (STPV) Cells using Different Photovoltaic Cells and a Radiation Shield Considering the Étendue of Solar Radiation”, Energies, 16 (2023) 7085. https://doi.org/10.3390/en16207085
  • Zhao, H.; Zhu, D.; Yang, Y.; Li, Q.; Zhang, E. “Study on photovoltaic power forecasting model based on peak sunshine hours and sunshine duration”, Energy Sci. Eng., (2023) 1‐11. https://doi.org/10.1002/ese3.1598
  • Zhu, J.; Zhao, Z.; Zheng, X.; An, Z.; Guo, Q.; Li, Z.; Sun, J.; Guo, Y. “Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer”; Energies, 16 (2023) 7610. https://doi.org/10.3390/en16227610
  • Li, G.; Ding, C.; Zhao, N.; Wei, J.; Guo, Y.; Meng, C.; Huang, K.; Zhu, R. “Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network”, Energy, 293 (2024) 130621. https://doi.org/10.1016/j.energy.2024.130621
  • Liu, J.; Li, T. “Multi-step power forecasting for regional photovoltaic plants based on ITDE-GAT model”, Energy, 293 (2024) 130468. https://doi.org/10.1016/j.energy.2024.130468
  • Murugan, R.; Arunachalam, S.; Hussein, M. R.; Seyedali, M. “Estimation of photovoltaic models using an enhanced Henry gas solubility optimization algorithm with first-order adaptive damping Berndt-Hall-Hall-Hausman method”, Energy Conversion and Management, 299 (2024) 117831, https://doi.org/10.1016/j.enconman.2023.117831
  • Nicoletti, F.; Bevilacqua, P. “Hourly Photovoltaic Production Prediction using Numerical Weather Data and Neural Networks for Solar Energy Decision Support”, Energies, 17 (2024) 466. https://doi.org/10.3390/en17020466
  • Wang, J.; Si, Y.; Zhu, Y.; Zhang, K.; Yin, S.; Liu, B. “Cyberattack detection for electricity theft in smart grids via stacking ensemble GRU optimization algorithm using federated learning framework”, Electrical Power and Energy Systems, 157 (2024) 109848; https://doi.org/10.1016/j.ijepes.2024.109848
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka (Diğer)
Bölüm Derlemeler
Yazarlar

Jamilu Ya'u Muhammad 0000-0002-7627-672X

Abubakar Abdulkarim Bu kişi benim 0009-0003-5256-4916

Nafi’u Muhammad Saleh 0009-0001-2414-1655

Israel Ehile Bu kişi benim 0009-0004-5243-3550

Nuraini Sunusi Ma’aji Bu kişi benim 0000-0003-4384-6826

Audu Taofeek Olaniyi Bu kişi benim 0009-0005-1648-8420

Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 16 Mayıs 2024
Kabul Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

IEEE J. Y. Muhammad, A. Abdulkarim, N. M. Saleh, I. Ehile, N. S. Ma’aji, ve A. T. Olaniyi, “Recent Progress on Applications of Artificial Intelligence for Sustainability of Solar Energy Technologies: An Extensive Review”, Adv. Artif. Intell. Res., c. 4, sy. 1, ss. 36–52, 2024, doi: 10.54569/aair.1483394.

88x31.png
Advances in Artificial Intelligence Research is an open access journal which means that the content is freely available without charge to the user or his/her institution. All papers are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows users to distribute, remix, adapt, and build upon the material in any medium or format for non-commercial purposes only, and only so long as attribution is given to the creator.

Graphic design @ Özden Işıktaş