Effect of α-lipoic acid and N-acetylcysteine on liver oxidative stress, preneoplastic lesions induced by diethylnitrosamine plus high-fat diet
Yıl 2021,
, 1 - 8, 30.03.2021
Adile Merve Baki
Pervin Vural
,
Abdurrahman Fatih Aydın
Merva Soluk Tekkeşin
,
Semra Doğru-abbasoğlu
Müjdat Uysal
Öz
Aim: Oxidative stress and inflammation are important for development of nonalcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC). High fat diet (HFD) acts as promoter and induces cancer formation by diethylnitrosamine (DEN)-initiated carcinogenesis. DEN+HFD experimental model may be suitable to investigate the relationship between diet, cirrhosis and cancer.
Methods: Rats were injected with DEN (50 mg/kg/once a week; i.p.) for 4 weeks. After 15 days, rats received HFD with/without supplementations of α-lipoic acid (ALA; 2 g/kg chow), N-acetylcysteine (NAC; 1% w/v drinking water) and their combination for 12 weeks.
Results: DEN+HFD-treatment resulted in increase of serum hepatic damage markers, hepatic oxidative stress parameters (lipid/protein oxidation products) and fibrotic changes. However, no HCC nodule was detected. Hepatic GST-pi and Ki-67 expressions also increased. Accordingly, DEN+HFD-treatment resulted in precancerous lesions and high rate of proliferation in the liver. NAC supplementation decreased hepatic oxidative stress and formation of fibrotic and preneoplastic lesions of DEN+HFD-treated rats. However, ALA supplementation did not have a curative effect on these lesions. No synergistic effect was seen with co-administration of ALA and NAC.
Conclusions: According to present results NAC, acting as an antioxidant, has ameliorating effect on DEN+HFD-induced oxidative stress and the formation of preneoplastic lesions in liver.
Destekleyen Kurum
Research Fund of Istanbul University
Proje Numarası
Project No: 52408 / 2630 / 21574
Teşekkür
The present work was supported by the Research Fund of Istanbul University (Project No: 52408 / 2630 / 21574).
Kaynakça
- 1. Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: current and potential therapies. Life Sci. 92;2013:114-8.
- 2. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 52;2012;59-69.
- 3. De Minicis S, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner Det al. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis. 2013;45:450-9.
- 4. Tolba R, Kraus T, Liedtke C, Schwarz M, Weiskirchen R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim. 2015;49:59-69.
- 5. Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD. Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer. 2010;126:1788-96.
- 6. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18:2300-8.
- 7. Oner-İyidoğan Y, Koçak H, Seyidhanoğlu M, Gürdöl F, Gülçubuk A, Yildirim F, et al. Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J Physiol Biochem. 2013;69:677-86.
- 8. Sheng D, Zhao S, Gao L, Zheng H, Liu W, Hou J, et al. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell Biosci. 2019;9:77.
- 9. Ip BC, Hu KQ, Liu C, Smith DE, Obin MS, Ausman LM, et al. Lycopene metabolite, apo-10'-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev Res. 2013;6:1304-16.
- 10. Chen YJ, Wallig MA, Jeffery EH. Dietary broccoli lessens development of fatty liver and liver cancer in mice given diethylnitrosamine and fed a Western or control diet. J Nutr. 2016;146:542-50.
- 11. Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, et al. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. Exp Toxicol Pathol. 2017;69:9-16.
- 12. Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63:849-58.
- 13. Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, et al. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J Nutr Biochem. 2014;25:1207-17.
- 14. Liu G, Liu J, Pian L, Gui S, Lu B. α Lipoic acid protects against carbon tetrachloride induced liver cirrhosis through the suppression of the TGF β/Smad3 pathway and autophagy. Mol Med Rep. 2019;19:841-50.
- 15. Al Abdan M. Alfa-lipoic acid controls tumor growth and modulates hepatic redox state in Ehrlich-ascites-carcinoma-bearing mice. Sci World J 2012;2012:509838. DOI: 10.1100/2012/509838
- 16. Fujii Y, Segawa R, Kimura M, Wang L, Ishii Y, Yamamoto R, et al. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats. Chem Biol Interact. 2013;205:108-18.
- 17. Perra A, Pibiri M, Sulas P, Simbula G, Ledda-Columbano GM, Columbano A. Alpha-lipoic acid promotes the growth of rat hepatic pre-neoplastic lesions in the choline-deficient model. Carcinogenesis. 2008;29:161-8.
- 18. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830:4117-29.
- 19. Lin CC, Yin MC. Effects of cysteine-containing compounds on biosynthesis of triacylglycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet. Br J Nutr. 2008;99:37-43.
- 20. De Andrade KQ, Moura FA, dos Santos JM, de Araújo OR, de Farias Santos JC, Goulart MO. Oxidative stress and inflammation in hepatic diseases: Therapeutic possibilities of N-Acetylcysteine. Int J Mol Sci. 2015;16:30269-308.
- 21. Shimamoto K, Hayashi H, Taniai E, Morita R, Imaoka M, Ishii Y, et al. Antioxidant N-acetyl-L-cysteine (NAC) supplementation reduces reactive oxygen species (ROS)-mediated hepatocellular tumor promotion of indole-3-carbinol (I3C) in rats. J Toxicol Sci. 2011;36:775-86.
- 22. Lin H, Liu XB, Yu JJ, Hua F, Hu ZW. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PloS One. 2013;8:e74130.
- 23. Enríquez-Cortina C, Bello-Monroy O, Rosales-Cruz P, Souza V, Miranda RU, Toledo-Pérez R, et al. Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis. Oncotarget. 2017;8:104136-48.
- 24. Bingül I, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, et al. High-fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int Immunopharmacol. 2016;39:199-207.
- 25. Cheng Y, Zheng H, Wang B, Xu W, Xu J, Zhu Y. Sorafenib and fluvastatin synergistically alleviate hepatic fibrosis via inhibiting the TGFβ1/Smad3 pathway. Dig Liver Dis. 2018;50:381-8.
- 26. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27:612-6.
- 27. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10.
- 28. Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G. Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta. 2012;413:901-6.
- 29. Münch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem. 1997;35:669-77.
- 30. Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15-27.
- 31. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-8.
- 32. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-20.
- 33. Worthington V. Catalase. In: Worthington Enzyme Manual: Enzymes and related biochemicals. NJ: Worthington Biochem Corp. 1993:77-80.
- 34. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71:952-8.
- 35. Habig WH, Jacoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398-405.
- 36. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.
- 37. Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007;47:598-607.
- 38. Glauert HP, Calfee-Mason K, Stemm DN, Tharappel JC, Spear BT. Dietary antioxidants in the prevention of hepatocarcinogenesis: a review. Mol Nutr Food Res. 2010;54:875-96.
- 39. Gao J, Wang Z, Wang GJ, Gao N, Li J, Zhang YF, et al. From hepatofibrosis to hepatocarcinogenesis: Higher cytochrome P4502E1 activity is a potential risk factor. Mol Carcinog. 2018;57:1371-82.
- 40. Paula Santos N, Colaço A, Gil da Costa RM, Manuel Oliveira M, Peixoto F, Alexandra Oliveira P. N-diethylnitrosamine mouse hepatotoxicity: time-related effects on histology and oxidative stress. Exp Toxicol Pathol. 2014;66:429-36.
- 41. Li S, Ghoshal S, Sojoodi M, Arora G, Masia R, Erstad DJ, et al. Pioglitazone reduces hepatocellular carcinoma development in two rodent models of cirrhosis. J Gastrointest Surg. 2019;23:101-11.
- 42. Jian T, Yu C, Ding X, Chen J3, Li J, Zuo Y, et al. Hepatoprotective effect of seed coat of euryale ferox extract in non-alcoholic fatty liver disease induced by high-diet in mice by increasing IRs-1 and inhibiting CYP2E1. J Oleo Sci. 2019;68:581-9.
α-Lipoik asit ve N-asetilsisteinin sıçan karaciğerinde dietilnitrozamin ve yüksek yağlı diyetin neden olduğu oksidatif stres ve preneoplastik lezyonlar üzerine etkisi
Yıl 2021,
, 1 - 8, 30.03.2021
Adile Merve Baki
Pervin Vural
,
Abdurrahman Fatih Aydın
Merva Soluk Tekkeşin
,
Semra Doğru-abbasoğlu
Müjdat Uysal
Öz
Amaç: Oksidatif stres ve inflamasyon steatohepatit (NASH), siroz ve hepatoselüler karsinom (HCC) gelişimi için önemlidir. Yüksek yağlı diyet (HFD) promotör görevi görür ve dietilnitrosamin (DEN) ile başlatılan karsinogenez modelinde kanser oluşumunu indükler. DEN + HFD uygulaması diyet, siroz ve kanser arasındaki ilişkiyi araştırmak için uygun bir deneysel model olabilir.
Yöntemler: Sıçanlara 4 hafta boyunca DEN (haftada bir kez 50 mg / kg / i.p.) enjekte edildi. 15 gün sonra, sıçanlara HFD tek başına veya α -lipoik asit (ALA; 2 g / kg yem), N-asetilsistein (NAC; içme suyunda % 1 w/v) takviyeleri 12 hafta süreyle verildi.
Bulgular: DEN + HFD uygulaması serum hepatik hasar belirteçleri ve hepatik oksidatif stres parametrelerinin (lipit/protein oksidasyon ürünleri) armasına ve fibrotik değişikliklere neden oldu. Ancak, HCC nodülü tespit edilmedi. Hepatik GST-pi ve Ki-67 ekspresyonları de artmış olarak bulunduğundan dolayı, DEN + HFD uygulaması, prekanseröz lezyonlara ve karaciğerde yüksek proliferasyon oranlarına neden oldu. NAC takviyesi, DEN + HFD ile muamele edilen sıçanların karaciğerinde oksidatif stresi ve fibrotik ve preneoplastik lezyonların oluşumunu azalttı. Bununla birlikte, ALA takviyesinin bu lezyonlar üzerinde iyileştirici bir etkisi olmamıştır. ALA ve NAC'nin birlikte uygulanmasıyla hiçbir sinerjistik etki görülmedi.
Sonuçlar: Sonuçlarımıza göre, bir antioksidan olan NAC, karaciğerde DEN + HFD'nin neden olduğu artmış oksidatif stresi azaltmada ve preneoplastik lezyonların oluşumu üzerine iyileştirici etkiye sahiptir.
Proje Numarası
Project No: 52408 / 2630 / 21574
Kaynakça
- 1. Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: current and potential therapies. Life Sci. 92;2013:114-8.
- 2. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 52;2012;59-69.
- 3. De Minicis S, Kisseleva T, Francis H, Baroni GS, Benedetti A, Brenner Det al. Liver carcinogenesis: rodent models of hepatocarcinoma and cholangiocarcinoma. Dig Liver Dis. 2013;45:450-9.
- 4. Tolba R, Kraus T, Liedtke C, Schwarz M, Weiskirchen R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim. 2015;49:59-69.
- 5. Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD. Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer. 2010;126:1788-96.
- 6. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18:2300-8.
- 7. Oner-İyidoğan Y, Koçak H, Seyidhanoğlu M, Gürdöl F, Gülçubuk A, Yildirim F, et al. Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J Physiol Biochem. 2013;69:677-86.
- 8. Sheng D, Zhao S, Gao L, Zheng H, Liu W, Hou J, et al. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell Biosci. 2019;9:77.
- 9. Ip BC, Hu KQ, Liu C, Smith DE, Obin MS, Ausman LM, et al. Lycopene metabolite, apo-10'-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice. Cancer Prev Res. 2013;6:1304-16.
- 10. Chen YJ, Wallig MA, Jeffery EH. Dietary broccoli lessens development of fatty liver and liver cancer in mice given diethylnitrosamine and fed a Western or control diet. J Nutr. 2016;146:542-50.
- 11. Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, et al. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. Exp Toxicol Pathol. 2017;69:9-16.
- 12. Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep. 2011;63:849-58.
- 13. Yang Y, Li W, Liu Y, Sun Y, Li Y, Yao Q, et al. Alpha-lipoic acid improves high-fat diet-induced hepatic steatosis by modulating the transcription factors SREBP-1, FoxO1 and Nrf2 via the SIRT1/LKB1/AMPK pathway. J Nutr Biochem. 2014;25:1207-17.
- 14. Liu G, Liu J, Pian L, Gui S, Lu B. α Lipoic acid protects against carbon tetrachloride induced liver cirrhosis through the suppression of the TGF β/Smad3 pathway and autophagy. Mol Med Rep. 2019;19:841-50.
- 15. Al Abdan M. Alfa-lipoic acid controls tumor growth and modulates hepatic redox state in Ehrlich-ascites-carcinoma-bearing mice. Sci World J 2012;2012:509838. DOI: 10.1100/2012/509838
- 16. Fujii Y, Segawa R, Kimura M, Wang L, Ishii Y, Yamamoto R, et al. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats. Chem Biol Interact. 2013;205:108-18.
- 17. Perra A, Pibiri M, Sulas P, Simbula G, Ledda-Columbano GM, Columbano A. Alpha-lipoic acid promotes the growth of rat hepatic pre-neoplastic lesions in the choline-deficient model. Carcinogenesis. 2008;29:161-8.
- 18. Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830:4117-29.
- 19. Lin CC, Yin MC. Effects of cysteine-containing compounds on biosynthesis of triacylglycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet. Br J Nutr. 2008;99:37-43.
- 20. De Andrade KQ, Moura FA, dos Santos JM, de Araújo OR, de Farias Santos JC, Goulart MO. Oxidative stress and inflammation in hepatic diseases: Therapeutic possibilities of N-Acetylcysteine. Int J Mol Sci. 2015;16:30269-308.
- 21. Shimamoto K, Hayashi H, Taniai E, Morita R, Imaoka M, Ishii Y, et al. Antioxidant N-acetyl-L-cysteine (NAC) supplementation reduces reactive oxygen species (ROS)-mediated hepatocellular tumor promotion of indole-3-carbinol (I3C) in rats. J Toxicol Sci. 2011;36:775-86.
- 22. Lin H, Liu XB, Yu JJ, Hua F, Hu ZW. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PloS One. 2013;8:e74130.
- 23. Enríquez-Cortina C, Bello-Monroy O, Rosales-Cruz P, Souza V, Miranda RU, Toledo-Pérez R, et al. Cholesterol overload in the liver aggravates oxidative stress-mediated DNA damage and accelerates hepatocarcinogenesis. Oncotarget. 2017;8:104136-48.
- 24. Bingül I, Aydın AF, Başaran-Küçükgergin C, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, et al. High-fat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats. Int Immunopharmacol. 2016;39:199-207.
- 25. Cheng Y, Zheng H, Wang B, Xu W, Xu J, Zhu Y. Sorafenib and fluvastatin synergistically alleviate hepatic fibrosis via inhibiting the TGFβ1/Smad3 pathway. Dig Liver Dis. 2018;50:381-8.
- 26. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27:612-6.
- 27. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10.
- 28. Hanasand M, Omdal R, Norheim KB, Gøransson LG, Brede C, Jonsson G. Improved detection of advanced oxidation protein products in plasma. Clin Chim Acta. 2012;413:901-6.
- 29. Münch G, Keis R, Wessels A, Riederer P, Bahner U, Heidland A, et al. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA. Eur J Clin Chem Clin Biochem. 1997;35:669-77.
- 30. Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15-27.
- 31. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-8.
- 32. Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82:512-20.
- 33. Worthington V. Catalase. In: Worthington Enzyme Manual: Enzymes and related biochemicals. NJ: Worthington Biochem Corp. 1993:77-80.
- 34. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71:952-8.
- 35. Habig WH, Jacoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398-405.
- 36. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.
- 37. Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol. 2007;47:598-607.
- 38. Glauert HP, Calfee-Mason K, Stemm DN, Tharappel JC, Spear BT. Dietary antioxidants in the prevention of hepatocarcinogenesis: a review. Mol Nutr Food Res. 2010;54:875-96.
- 39. Gao J, Wang Z, Wang GJ, Gao N, Li J, Zhang YF, et al. From hepatofibrosis to hepatocarcinogenesis: Higher cytochrome P4502E1 activity is a potential risk factor. Mol Carcinog. 2018;57:1371-82.
- 40. Paula Santos N, Colaço A, Gil da Costa RM, Manuel Oliveira M, Peixoto F, Alexandra Oliveira P. N-diethylnitrosamine mouse hepatotoxicity: time-related effects on histology and oxidative stress. Exp Toxicol Pathol. 2014;66:429-36.
- 41. Li S, Ghoshal S, Sojoodi M, Arora G, Masia R, Erstad DJ, et al. Pioglitazone reduces hepatocellular carcinoma development in two rodent models of cirrhosis. J Gastrointest Surg. 2019;23:101-11.
- 42. Jian T, Yu C, Ding X, Chen J3, Li J, Zuo Y, et al. Hepatoprotective effect of seed coat of euryale ferox extract in non-alcoholic fatty liver disease induced by high-diet in mice by increasing IRs-1 and inhibiting CYP2E1. J Oleo Sci. 2019;68:581-9.