Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 9 Sayı: 1, 223 - 252, 30.06.2025
https://doi.org/10.26650/acin.1676351

Öz

Kaynakça

  • Alam, M. Z., Simonetti, A., Brillantino, R., Tayler, N., Grainge, C., Siribaddana, P., Nouraei, S. A. R., Batchelor, J., Rahman, M. S., Mancuzo, E. V., Holloway, J. W., Holloway, J. A., & Rezwan, F. I. (2022). Predicting pulmonary function from the analysis of voice: A machine learning approach. Frontiers in Digital Health, 4, 750226. https://doi.org/10.3389/fdgth.2022.750226 google scholar
  • Aykanat, M., Kılıç, Ö., Kurt, B., & Saryal, S. B. (2020). Lung disease classification using machine learning algorithms. International Journal of Applied Mathematics Electronics and Computers, 8 (4), 125-132. https://doi.org/10.18100/ijamec.799363 google scholar
  • Barnes, P. J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 8(3), 183-192. https://doi.org/10.1038/nri2254 google scholar
  • Bolat, E. (2021). Use of machine learning methods in the classification of respiratory system diseases [Unpublished doctoral dissertation]. Istanbul University Institute of Health Sciences. google scholar
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & KegeLmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artficial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 google scholar
  • Chen, M.-H., Lee, G., & Hung, L.-P. (2025). Al-driven data analysis for asthma risk prediction. Healthcare, 13, 774. https://doi.org/10.3390/ healthcare13070774 google scholar
  • Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366. https://doi.org/10.1109/TASSP. 1980.1163420 google scholar
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15). Springer. https://doi.org/10. 1007/3-540-45014-9_1 google scholar
  • Fesçi, H., & Görgülü, Ü. (2005). Asthma and life. Journal of School of Nursing, 1 (i), 77-83. https://dergipark.org.tr/tr/download/article-file/88607 google scholar
  • Ganaie, M. A., Hu, M., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151 google scholar
  • Global Initiative for Asthma. (2023). Global strategy for asthma Management and prevention. https://ginasthma.org/2023-gina-main-report/ google scholar
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. google scholar
  • Gunawardana, J., Viswakula, S., Rannan-Eliya, R. P., & Wijemunige, N. (2024). Machine learning approaches for asthma disease prediction among adults in Sri Lanka. Health Informatics Journal, 30(3), 14604582241283968. https://doi.org/10.1177/14604582241283968 google scholar
  • Holgate, S. T., Wenzel, S., Postma, D. S., Weiss, S. T., Renz, H., & Sly, P. D. (2015). Asthma. Nature Reviews Disease Primers, 1, 15025. https:// doi.org/10.1038/nrdp.2015.25 google scholar
  • Kaplan, A., Cao, H., FitzGerald, J. M., Iannotti, N., Yang, E., Kocks, J. W. H., Kostikas, K., Price, D., Reddel, H. K., Tsiligianni, I., Vogelmeier, C. F., Pfister, P., & Mastoridis, P. (2021). Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. The Journal of Allergy and Clinical Immunology: In Practice, 9(6), 2255-2261. https://doi.org/10.1016/j.jaip. 2021.02.014 google scholar
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. İn Proceedings of the 14th International Joint Conference on Artificial Intelligence (Vol. 2, pp. 1137-1143). google scholar
  • Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45-56. https://doi.org/10.1038/ni.3049 google scholar
  • Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. In Proceedings of the 1st International Symposium on Music Information Retrieval (pp. 1-13). https://doi.org/10.5281/zenodo.1416444 google scholar
  • Malmberg, L. P., Sovijarvi, A. R. A., Paajanen, E., Piirila, P., Haahtela, T., & Katila, T. (1994). Changes in frequency spectra of breath sounds during histamine challenge test in adult asthmatics and healthy control subjects. Chest, 105(1), 122-131. https://doi.org/10.1378/ chest.105.1.122 google scholar
  • Mayr, W., Triantafyllopoulos, A., Batliner, A., Schuller, B. W., & Berghaus, T. M. (2025). Assessing the clinical and functional status of COPD patients using speech analysis during and after exacerbation. International Journal of Chronic Obstructive Pulmonary Disease, 20, 137-147. google scholar
  • Ministry of Health of the Republic of Turkey, General Directorate of Public Health. (2024, August 1). World Asthma Day May 7, 2024. https://hsgm.saglik.gov.tr/tr/haberler/7-mayis-2024-duenya-astim-guenue.html google scholar
  • Petmezas, G., Cheimariotis, G.-A., Stefanopoulos, L., Rocha, B., Paiva, R. P., Katsaggelos, A. K., & Maglaveras, N. (2022). Automated lung sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors, 22(3), 1232. https://doi.org/10.3390/ s22031232 google scholar
  • Rabiner, L. R., & Schafer, R. W. (2007). Introduction to digital speech processing. Now Publishers. https://doi.org/10.1561/2000000001 google scholar
  • Reichert, S., Gass, R., Brandt, C., & Andres, E. (2008). Analysis of respiratory sounds: State of the art. Clinical Medicine: Circulatory, Respiratory and Pulmonary Medicine, 2, 45-58. https://doi.org/10.4137/CCRPM.S530 google scholar
  • Rivas-Navarrete, J. A., Perez-Espinosa, H., Padilla-Ortiz, A. L., Rodrîguez-Gonzâlez, A. Y., & Garcîa-Cambero, D. C. (2025). Edge computing system for automatic detection of chronic respiratory diseases using audio analysis. Journal of Medical Systems, 49, 33. https:// doi.org/l0.1007/s10916-025-02154-7 google scholar
  • Saygılı, M. (2019). Mobile health. İn M. S. Yıldız (Ed.), Advanced Technology Applications in healthcare (pp. 211-238). Nobel Academic Publishing. google scholar
  • Schreur, H. J. W., Vanderschoot, J., Zwinderman, A. H., Dijkman, J. H., & Sterk, P. J. (1994). AbnormaL Lung sounds in patients with asthma during episodes with normaL Lung function. Chest, 106(1), 91-99. https://doi.org/10.1378/chest.106.1.91 google scholar
  • Sezer, E., & Akıl, S. (2020). Criteria used by speech-Language pathologists in Turkey for diagnosing childhood apraxia of speech. Journal of Language, Speech and Swallowing Research, 3(2), 153-174. google scholar
  • Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Deep Learning Applications for COVID-19. Journal of Big Data, 8, 18. https://doi.org/ 10.1186/s40537-020-00392-9 google scholar
  • SterLing, M., Rhee, H., & Bocko, M. (2014). Automated cough assessment on a mobile pLatform. Journal of Medical Engineering, 2014, 951621. https://doi.org/10.1155/2014/951621 google scholar
  • Topaz, M., ZoLnoori, M., NorfuL, A. A., Perrier, A., Kostic, Z., & George, M. (2022). Speech recognition can heLp evaLuate shared decision making and predict medication adherence in primary care setting. PLOS ONE, 17(8), e0271884. https://doi.org/10.1371/journaL. pone.0271884 google scholar
  • World Health Organization. (2024, May 6). Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma google scholar
  • Y adav, S., Keerthana, M., Gope, D., Maheswari, U. K., & Ghosh, P. K. (2020). Analysis of acoustic features for speech sound-based classification of asthmatic and healthy subjects. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 6789-6793). IEEE. https://doi.org/10.1109/ICASSP40776.2020.9054062 google scholar
  • Y adav, S., Nk, K., Gope, D., Krishnaswamy, U. M., & Ghosh, P. K. (2018). Comparison of cough, wheeze and sustained phonations for automatic classification between healthy subjects and asthmatic patients. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1400-1403). google scholar
  • Y oung, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., & Moore, G. (2006). The HTK book. Cambridge University Engineering Department. google scholar
  • Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. https://doi.org/10.1145/3446776 google scholar
  • Zhang, Y., Huang, Q., Sun, W., Chen, F., Lin, D., & Chen, F. (2024). Research on lung sound classification model based on dual-channel CNN-LSTM algorithm. Biomedical Signal Processing and Control, 94, 106257. https://doi.Org/l0.1016/j.bspc.2024.106257 google scholar

Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning

Yıl 2025, Cilt: 9 Sayı: 1, 223 - 252, 30.06.2025
https://doi.org/10.26650/acin.1676351

Öz

Asthma is one of the most common chronic respiratory diseases worldwide, and early and accurate diagnosis is critical for effective clinical management. In this study, we evaluated the diagnostic potential of machine learning models based on voice analysis as a non-invasive approach for asthma diagnosis. Using audio samples containing seven different phonetic units, the performances of 13 different machinelearning algorithms were comprehensively analyzed. The StandardScaler and SMOTE techniques were applied in the data preprocessing stage, and a 5-fold cross-validation methodology was adopted to evaluate the models. Accuracy, F1-score, sensitivity, precision, specificity, and area under the curve (AUC) metrics were used for performance evaluation. The results demonstrate that ensemble learning approaches, particularly the stacking ensemble model, exhibit superior discriminative capacity for all phonetic units. Individual models, such as neural networks and support vector machines, also produced remarkable results, whereas simpler models were limited in terms of capturing complex patterns in audio data. This study demonstrated the promising diagnostic potential of voice analysis-based ensemble learning approaches for asthma diagnosis; however, it emphasizes the need for an optimal balance between sensitivity and specificity in clinical applications.

Kaynakça

  • Alam, M. Z., Simonetti, A., Brillantino, R., Tayler, N., Grainge, C., Siribaddana, P., Nouraei, S. A. R., Batchelor, J., Rahman, M. S., Mancuzo, E. V., Holloway, J. W., Holloway, J. A., & Rezwan, F. I. (2022). Predicting pulmonary function from the analysis of voice: A machine learning approach. Frontiers in Digital Health, 4, 750226. https://doi.org/10.3389/fdgth.2022.750226 google scholar
  • Aykanat, M., Kılıç, Ö., Kurt, B., & Saryal, S. B. (2020). Lung disease classification using machine learning algorithms. International Journal of Applied Mathematics Electronics and Computers, 8 (4), 125-132. https://doi.org/10.18100/ijamec.799363 google scholar
  • Barnes, P. J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 8(3), 183-192. https://doi.org/10.1038/nri2254 google scholar
  • Bolat, E. (2021). Use of machine learning methods in the classification of respiratory system diseases [Unpublished doctoral dissertation]. Istanbul University Institute of Health Sciences. google scholar
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & KegeLmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artficial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953 google scholar
  • Chen, M.-H., Lee, G., & Hung, L.-P. (2025). Al-driven data analysis for asthma risk prediction. Healthcare, 13, 774. https://doi.org/10.3390/ healthcare13070774 google scholar
  • Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366. https://doi.org/10.1109/TASSP. 1980.1163420 google scholar
  • Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15). Springer. https://doi.org/10. 1007/3-540-45014-9_1 google scholar
  • Fesçi, H., & Görgülü, Ü. (2005). Asthma and life. Journal of School of Nursing, 1 (i), 77-83. https://dergipark.org.tr/tr/download/article-file/88607 google scholar
  • Ganaie, M. A., Hu, M., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151 google scholar
  • Global Initiative for Asthma. (2023). Global strategy for asthma Management and prevention. https://ginasthma.org/2023-gina-main-report/ google scholar
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. google scholar
  • Gunawardana, J., Viswakula, S., Rannan-Eliya, R. P., & Wijemunige, N. (2024). Machine learning approaches for asthma disease prediction among adults in Sri Lanka. Health Informatics Journal, 30(3), 14604582241283968. https://doi.org/10.1177/14604582241283968 google scholar
  • Holgate, S. T., Wenzel, S., Postma, D. S., Weiss, S. T., Renz, H., & Sly, P. D. (2015). Asthma. Nature Reviews Disease Primers, 1, 15025. https:// doi.org/10.1038/nrdp.2015.25 google scholar
  • Kaplan, A., Cao, H., FitzGerald, J. M., Iannotti, N., Yang, E., Kocks, J. W. H., Kostikas, K., Price, D., Reddel, H. K., Tsiligianni, I., Vogelmeier, C. F., Pfister, P., & Mastoridis, P. (2021). Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. The Journal of Allergy and Clinical Immunology: In Practice, 9(6), 2255-2261. https://doi.org/10.1016/j.jaip. 2021.02.014 google scholar
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. İn Proceedings of the 14th International Joint Conference on Artificial Intelligence (Vol. 2, pp. 1137-1143). google scholar
  • Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45-56. https://doi.org/10.1038/ni.3049 google scholar
  • Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. In Proceedings of the 1st International Symposium on Music Information Retrieval (pp. 1-13). https://doi.org/10.5281/zenodo.1416444 google scholar
  • Malmberg, L. P., Sovijarvi, A. R. A., Paajanen, E., Piirila, P., Haahtela, T., & Katila, T. (1994). Changes in frequency spectra of breath sounds during histamine challenge test in adult asthmatics and healthy control subjects. Chest, 105(1), 122-131. https://doi.org/10.1378/ chest.105.1.122 google scholar
  • Mayr, W., Triantafyllopoulos, A., Batliner, A., Schuller, B. W., & Berghaus, T. M. (2025). Assessing the clinical and functional status of COPD patients using speech analysis during and after exacerbation. International Journal of Chronic Obstructive Pulmonary Disease, 20, 137-147. google scholar
  • Ministry of Health of the Republic of Turkey, General Directorate of Public Health. (2024, August 1). World Asthma Day May 7, 2024. https://hsgm.saglik.gov.tr/tr/haberler/7-mayis-2024-duenya-astim-guenue.html google scholar
  • Petmezas, G., Cheimariotis, G.-A., Stefanopoulos, L., Rocha, B., Paiva, R. P., Katsaggelos, A. K., & Maglaveras, N. (2022). Automated lung sound classification using a hybrid CNN-LSTM network and focal loss function. Sensors, 22(3), 1232. https://doi.org/10.3390/ s22031232 google scholar
  • Rabiner, L. R., & Schafer, R. W. (2007). Introduction to digital speech processing. Now Publishers. https://doi.org/10.1561/2000000001 google scholar
  • Reichert, S., Gass, R., Brandt, C., & Andres, E. (2008). Analysis of respiratory sounds: State of the art. Clinical Medicine: Circulatory, Respiratory and Pulmonary Medicine, 2, 45-58. https://doi.org/10.4137/CCRPM.S530 google scholar
  • Rivas-Navarrete, J. A., Perez-Espinosa, H., Padilla-Ortiz, A. L., Rodrîguez-Gonzâlez, A. Y., & Garcîa-Cambero, D. C. (2025). Edge computing system for automatic detection of chronic respiratory diseases using audio analysis. Journal of Medical Systems, 49, 33. https:// doi.org/l0.1007/s10916-025-02154-7 google scholar
  • Saygılı, M. (2019). Mobile health. İn M. S. Yıldız (Ed.), Advanced Technology Applications in healthcare (pp. 211-238). Nobel Academic Publishing. google scholar
  • Schreur, H. J. W., Vanderschoot, J., Zwinderman, A. H., Dijkman, J. H., & Sterk, P. J. (1994). AbnormaL Lung sounds in patients with asthma during episodes with normaL Lung function. Chest, 106(1), 91-99. https://doi.org/10.1378/chest.106.1.91 google scholar
  • Sezer, E., & Akıl, S. (2020). Criteria used by speech-Language pathologists in Turkey for diagnosing childhood apraxia of speech. Journal of Language, Speech and Swallowing Research, 3(2), 153-174. google scholar
  • Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Deep Learning Applications for COVID-19. Journal of Big Data, 8, 18. https://doi.org/ 10.1186/s40537-020-00392-9 google scholar
  • SterLing, M., Rhee, H., & Bocko, M. (2014). Automated cough assessment on a mobile pLatform. Journal of Medical Engineering, 2014, 951621. https://doi.org/10.1155/2014/951621 google scholar
  • Topaz, M., ZoLnoori, M., NorfuL, A. A., Perrier, A., Kostic, Z., & George, M. (2022). Speech recognition can heLp evaLuate shared decision making and predict medication adherence in primary care setting. PLOS ONE, 17(8), e0271884. https://doi.org/10.1371/journaL. pone.0271884 google scholar
  • World Health Organization. (2024, May 6). Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma google scholar
  • Y adav, S., Keerthana, M., Gope, D., Maheswari, U. K., & Ghosh, P. K. (2020). Analysis of acoustic features for speech sound-based classification of asthmatic and healthy subjects. In 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 6789-6793). IEEE. https://doi.org/10.1109/ICASSP40776.2020.9054062 google scholar
  • Y adav, S., Nk, K., Gope, D., Krishnaswamy, U. M., & Ghosh, P. K. (2018). Comparison of cough, wheeze and sustained phonations for automatic classification between healthy subjects and asthmatic patients. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1400-1403). google scholar
  • Y oung, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., & Moore, G. (2006). The HTK book. Cambridge University Engineering Department. google scholar
  • Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115. https://doi.org/10.1145/3446776 google scholar
  • Zhang, Y., Huang, Q., Sun, W., Chen, F., Lin, D., & Chen, F. (2024). Research on lung sound classification model based on dual-channel CNN-LSTM algorithm. Biomedical Signal Processing and Control, 94, 106257. https://doi.Org/l0.1016/j.bspc.2024.106257 google scholar
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ses İşleme, Makine Öğrenme (Diğer), Konuşma Tanıma
Bölüm Araştırma Makalesi
Yazarlar

Murat Gezer 0000-0002-7286-3943

Mehmet Atilla Uysal 0000-0002-0430-498X

Neval Alagöz 0000-0002-4203-4562

Can Ortak 0009-0001-3299-5562

Elif Yelda Niksarlıoğlu 0000-0002-6119-6540

Gönderilme Tarihi 16 Nisan 2025
Kabul Tarihi 3 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Gezer, M., Uysal, M. A., Alagöz, N., … Ortak, C. (2025). Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning. Acta Infologica, 9(1), 223-252. https://doi.org/10.26650/acin.1676351
AMA Gezer M, Uysal MA, Alagöz N, Ortak C, Niksarlıoğlu EY. Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning. ACIN. Haziran 2025;9(1):223-252. doi:10.26650/acin.1676351
Chicago Gezer, Murat, Mehmet Atilla Uysal, Neval Alagöz, Can Ortak, ve Elif Yelda Niksarlıoğlu. “Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning”. Acta Infologica 9, sy. 1 (Haziran 2025): 223-52. https://doi.org/10.26650/acin.1676351.
EndNote Gezer M, Uysal MA, Alagöz N, Ortak C, Niksarlıoğlu EY (01 Haziran 2025) Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning. Acta Infologica 9 1 223–252.
IEEE M. Gezer, M. A. Uysal, N. Alagöz, C. Ortak, ve E. Y. Niksarlıoğlu, “Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning”, ACIN, c. 9, sy. 1, ss. 223–252, 2025, doi: 10.26650/acin.1676351.
ISNAD Gezer, Murat vd. “Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning”. Acta Infologica 9/1 (Haziran2025), 223-252. https://doi.org/10.26650/acin.1676351.
JAMA Gezer M, Uysal MA, Alagöz N, Ortak C, Niksarlıoğlu EY. Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning. ACIN. 2025;9:223–252.
MLA Gezer, Murat vd. “Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning”. Acta Infologica, c. 9, sy. 1, 2025, ss. 223-52, doi:10.26650/acin.1676351.
Vancouver Gezer M, Uysal MA, Alagöz N, Ortak C, Niksarlıoğlu EY. Voices from the Lungs: An Innovative Approach to Asthma Diagnosis using Machine Learning. ACIN. 2025;9(1):223-52.