Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 9 Sayı: 2, 491 - 511, 31.12.2025
https://doi.org/10.26650/acin.1681039
https://izlik.org/JA89DZ79GH

Öz

Kaynakça

  • Adem, A., Çolak, A., & Dağdeviren, M. (2018). An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine. Safety Science, 106. google scholar
  • Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment Analysis of Twitter Data. LSM '11 Proceedings of the Workshop on Languages in Social Media, 30-38. google scholar
  • Agüero-Torales, M. M., Cobo, M. J., Herrera-Viedma, E., & López-Herrera, A. G. (2019). A cloud-based tool for sentiment analysis in reviews about restaurants on TripAdvisor. Procedia Computer Science, 162, 392-399. google scholar
  • Aksu, M. Ç., & Karaman, E. (2022). Turistik Mekanlara Yönelik Sosyal Medya Paylaşımlarının Yapay Zekâ Yöntemleriyle Değerlendirilmesi: Artvin İli Örneği. Journal of Tourism and Gastronomy Studies, 10(1), 505-524. google scholar
  • Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6 (100114), 1-10. https://doi.org/10.1016/j.mlwa.2021.100114 google scholar
  • AWS. (2024). Available, https://aws.amazon.com/tr/comprehend/, Accessed on, Mar. 01, 2024. google scholar
  • Benzaghta, M. A., Elwalda, A., Mousa, M. M., Erkan, I., & Rahman, M. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights. 6, 1, 54-72. google scholar
  • Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: O'Reilly Media, Inc. google scholar
  • Büyükeke, A., Sökmen, A., & Gencer, C. (2020). Metin Madenciliği ve Duygu Analizi Yöntemleri ile Sosyal Medya Verilerinden Rekabetçi Avantaj Elde Etme: Turizm Sektöründe Bir Araştırma. Journal of Tourism and Gastronomy Studies, 8(1), 322-335. doi:10.21325/jotags.2020.550 google scholar
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Paper presented at the KDD ’16, San Francisco, CA, USA. google scholar
  • Çekal, N., & Aktürk, H. (2019). Gaziantep mutfağına özgü çorbalara ilişkin müşteri değerlendirmelerinin incelenmesi. Journal of Tourism and Gastronomy Studies, 7(2), 1488–1498. https://doi.org/10.21325/jotags.2019.431 google scholar
  • Çevik, F., & Kilimci, Z. (2021). Derin öğrenme yöntemleri ve kelime yerleştirme modelleri kullanılarak Parkinson hastalığının duygu analiziyle değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi (PAJES), 27(2), 151–161. google scholar
  • Demirbilek, M., & Özulukale Demirbilek, S. (2023). Google Yorumları Üzerinden Makine Öğrenme Yöntemleri ve Amazon Comprehend ile Duygu Analizi: İç Anadoluda Bir Üniversite Örneği. Üniversite Araştırmaları Dergisi, 6(4), 452-461. https://doi.org/10.32329/uad.1383794 google scholar
  • Doaa Mohey El-Din Mohamed, H. (2018). A survey on sentiment analysis challenges. Journal of King Saud University - Engineering Sciences, 30(4), 330-338. https://doi.org/10.1016/j.jksues.2016.04.002 google scholar
  • Duarte Alonso, A., O'neill, M., Liu, Y., & O'shea, M. (2013). Factors driving consumer restaurant choice: An exploratory study from the Southeastern United States. Journal of Hospitality Marketing & Management, 22(5), 547-567. google scholar
  • Duman, E. (2022). Implementation of XGBoost Method for Healthcare Fraud Detection. Scientific Journal of Mehmet Akif Ersoy University, 5(2), 69-75. google scholar
  • Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd Edition ed.): O'Reilly Media, Inc. google scholar
  • Gündüz, H. (2023). Derin Transformatörlerden Çift Yönlü Kodlayıcı Temsilleri ve Destek Vektör Makineleri ile Türkçe Film Yorumları Üzerine Duygu Analizi. KSÜ Mühendislik Bilimleri Dergisi, 26(2), 542-549. google scholar
  • Ha, J., & Jang, S. S. (2010). Effects of service quality and food quality: The moderating role of atmospherics in an ethnic restaurant segment. International Journal of Hospitality Management, 29(3), 520-529. google scholar
  • Hamad, M. M., Salih, M. A., & Jaleel, R. A. (2021). Sentiment analysis of restaurant reviews in social media using Naïve Bayes. Applications of Modelling and Simulation, 5, 166-172. google scholar
  • Hossain, N., Bhuiyan, M. R., Tumpa, Z. N., & Hossain, S. A. (2020, 1–3 July 2020). Sentiment analysis of restaurant reviews using combined CNN-LSTM. Paper presented at the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India. google scholar
  • Instant Data Scraper. (2024). Available, https://chrome.google.com/webstore/detail/instant-data-scraper/ofaokhiedipichpaobibbnahnkdoiiah, Accessed on, Feb. 20, 2024. google scholar
  • Jonathan, B., Sihotang, J. I., & Martin, S. (2019, October). Sentiment analysis of customer reviews in zomato bangalore restaurants using random forest classifier. Paper presented at the International Scholars Conference. google scholar
  • Kang, H., Yoo, S. J., & Han, D. (2012). Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Systems with Applications, 39(5), 6000-6010. google scholar
  • Kecman, V. (2005). Support vector machines: theory and applications: Springer Berlin Heidelberg. google scholar
  • Korkmaz, A., & Bulut, S. (2023). Social Media Sentiment Analysis for Solar Eclipse with Text Mining. Acta Infologica, 7(1). doi:https://doi.org/10.26650/acin.1207100 google scholar
  • Köksal, B., Erdem, G., Türkeli, C., & Kamışlı Öztürk, Z. (2021). Twitter’da Duygu Analizi Yöntemi Kullanılarak Bitcoin Değer Tahminlemesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 280-297. doi:10.29130/dubited.792909 google scholar
  • Madsen, D. Ø. (2016). SWOT analysis: A management fashion perspective. International Journal of Business Research, 16(1), 39-56. google scholar
  • McIntyre‐Bhatty, Y. T. (2000). Neural network analysis and the characteristics of market sentiment in the financial markets. Expert Systems, 17(4), 191-198. google scholar
  • Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment Analysis Algorithms and Applications: A Survey. Ain Shams Engineering Journal, 5, 1093-1113. doi:http://dx.doi.org/10.1016/j.asej.2014.04.011 google scholar
  • NLTK. (2024). Available, https//www.nltk.org/, Accessed on, Feb. 20, 2024. google scholar
  • OpenAI. (2024). ChatGPT (Mar 14 version) [Large language model]. Available, [suspicious link removed], Accessed on, Apr. 15, 2024. google scholar
  • Özel, M., & Çetinkaya Bozkurt, Ö. (2024). Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data. Acta Infologica, 8(1), 23-33. https://doi.org/10.26650/acin.1418834 google scholar
  • Özen, İ. A. (2021). Yerel Restoranların Değerlendirilmesinde Fikir Madenciliği: Gaziantep Örneği (Opinion Mining in the Evaluation of Local Restaurants: The Case of Gaziantep). Journal of Tourism & Gastronomy Studies, 9(1), 377-391. google scholar
  • Öztürk, S. (2022). Bipolar Bozukluk Manik Atak Tanılı Hastaların Atak Şiddetinin Video Tabanlı Duygu Analizi ile Değerlendirilmesi. (Doktora Tezi), Trakya Üniversitesi Edirne. google scholar
  • Peters, C. M. (2024). The Power of Google Reviews for Restaurant Marketing. Available, https://restaurantsmarketing.com.au/blog/the-power-of-google-reviews-for-restaurant-marketing/#:~:text=Google%20reviews%20are%20extremely%20important,to%20rank%20in%20search%20results, Accessed on, Jan. 31, 2024. google scholar
  • Pisner, D. A., & Schnyer, D. M. (2020). Chapter 6 - Support vector machine. In A. Mechelli & S. Vieira (Eds.), Machine learning (pp. 101-121). google scholar
  • Ponnam, A., & Balaji, M. S. (2014). Matching visitation-motives and restaurant attributes in casual dining restaurants. International journal of hospitality management, 37, 47-57. google scholar
  • Renganathan, V., & Upadhya, A. (2021). Dubai restaurants: A sentiment analysis of tourist reviews. Academica Turistica - Tourism and Innovation Journal, 14(2). doi:https://doi.org/10.26493/2335-4194.14.165-174 google scholar
  • Rita, P., Vong, C., Pinheiro, F., & Mimoso, J. (2023). A sentiment analysis of Michelin-starred restaurants. European Journal of Management and Business Economics, 32(3), 276-295. google scholar
  • Rozmi, A. N. A., Nordin, A., & Bakar, M. I. A. (2018). The perception of ICT adoption in small medium enterprise: A SWOT analysis. International Journal of Innovation Business Strategy, 19(1), 69-79. google scholar
  • Scikit-learn (2025). Available, https://scikit-learn.org/stable/supervised_learning.html, Accessed on, May. 25, 2025 google scholar
  • Shin, B., Ryu, S., Kim, Y., & Kim, D. (2022). Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis Journal of Multimedia Information System, 9(1), 61-68. google scholar
  • Singgalen, Y. A. (2022). Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo Journal of Information Systems and Informatics, 4(3), 511-523. google scholar
  • Tuna, M. F. (2022). Mobil Uygulama Müşteri Geri Bildirimindeki Duyguların Makine Öğrenmesi Yöntemleriyle Sınıflandırılması. Journal of Business and Communication Studies, 1(1), 83-103. http://dx.doi.org/10.29228/jobacs.63080 google scholar
  • Uçuk, C., & Kayran, M. (2020). Gaziantep mutfağının tarihsel gelişimi: Milli mücadele döneminde Gaziantep’te yeme içme faaliyetleri. Safran Kültür ve Turizm Araştırmaları Dergisi, 3(2), 258–272. google scholar
  • Ustabulut, M. Y. (2021). SWOT Analysis for the Distance Education Process of Lecturers Teaching Turkish as a Foreign Language. Educational Policy Analysis and Strategic Research, 16(1), 139-152. https://doi.org/10.29329/epasr.2020.334.8 google scholar
  • Uyaroğlu Akdeniz, F. N., & Cebeci, H. İ. (2021). Belediye Hizmetlerin Değerlendirilmesinde Duygu Analizi Yaklaşımı: Sakarya İli Örneği. Zeki Sistemler Teori ve Uygulamaları Dergisi, 4(2), 127-135. doi:10.38016/jista.932762 google scholar
  • Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. doi:https://doi.org/10.1007/s10462-022-10144-1 google scholar
  • Web of Science (2024), https://www.webofscience.com/, Accessed on, Feb. 20, 2024. google scholar
  • XGBoost. (2025, May 25). XGBoost Python Package Python Package Introduction. https://xgboost.readthedocs.io/en/stable/python/python_intro.html google scholar
  • Ylimaki, E. (2024). Why Google Restaurant Reviews Are a Must, Available https://trustmary.com/reviews/why-google-restaurant-reviews-are-a-must/, Accessed on, Jan. 31, 2024. google scholar
  • Yu, B., Zhou, J., Zhang, Y., & Cao, Y. (2017). Identifying restaurant features via sentiment analysis on yelp reviews. arXiv preprint arXiv:1709.08698, 1-6. google scholar
  • Yu, T., Rita, P., Moro, S., & Oliveira, C. (2022). Insights from sentiment analysis to leverage local tourism business in restaurants. International Journal of Culture, Tourism and Hospitality Research, 16(1), 321-336. google scholar
  • Yüksel, A. S., & Tan, F. G. (2018). Metin Madenciliği Teknikleri ile Sosyal Ağlarda Bilgi Keşfi. Mühendislik Bilimleri ve Tasarım Dergisi, 6(2), 324-333. https://doi.org/10.21923/jesd.384791 google scholar
  • Zeng, B. (2013). Social Media in Tourism. J Tourism Hospit 2(1), 1-2. http://dx.doi.org/10.4172/2167-0269.1000e125 google scholar
  • Zhou, X., Wan, X., & Xiao, J. (2016, November 1-5, 2016). Attention-based LSTM network for cross-lingual sentiment classification, Austin, Texas. google scholar

Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models

Yıl 2025, Cilt: 9 Sayı: 2, 491 - 511, 31.12.2025
https://doi.org/10.26650/acin.1681039
https://izlik.org/JA89DZ79GH

Öz

With the widespread use of the internet today, the emphasis on companies’ digital visibility and social media accounts has significantly increased the volume of reviews/feedback from end-users across various platforms. Accurately assessing users’ emotional states is of paramount importance for businesses in sustaining competitive advantage. This study conducted a sentiment analysis of Google Maps reviews for restaurants in Gaziantep, a city that stands out in gastronomy tourism, followed by a SWOT analysis based on the collected reviews. Initially, comments collected through web scraping techniques were processed in the preliminary phase. In the second phase, sentiment analysis was performed using machine learning methods frequently employed in the literature for sentiment analysis, such as logistic regression, support vector machine, and Gaussian naive Bayes, along with an ensemble learning method XGBoost and the deep learning method LSTM. Alongside these methods, large language models, such as AWS Comprehend and GPT-4, were integrated into our analysis using their development libraries. For a robust analysis, comments were analyzed in both Turkish and English, achieving success rates above 80% across all performance metrics for machine and deep learning methods and over 90% for AWS and GPT-4. While AWS does not support the Turkish language, GPT-4 has shown similar success rates in both the Turkish and English languages. A SWOT analysis was conducted in the final phase based on the aggregated comments. According to the analysis results, delicious meals, attentive staff, fast service, hygiene and cleanliness, and reasonable prices were identified as strengths, whereas overcrowding, noise, and delays in service were identified as weaknesses.

Kaynakça

  • Adem, A., Çolak, A., & Dağdeviren, M. (2018). An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine. Safety Science, 106. google scholar
  • Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment Analysis of Twitter Data. LSM '11 Proceedings of the Workshop on Languages in Social Media, 30-38. google scholar
  • Agüero-Torales, M. M., Cobo, M. J., Herrera-Viedma, E., & López-Herrera, A. G. (2019). A cloud-based tool for sentiment analysis in reviews about restaurants on TripAdvisor. Procedia Computer Science, 162, 392-399. google scholar
  • Aksu, M. Ç., & Karaman, E. (2022). Turistik Mekanlara Yönelik Sosyal Medya Paylaşımlarının Yapay Zekâ Yöntemleriyle Değerlendirilmesi: Artvin İli Örneği. Journal of Tourism and Gastronomy Studies, 10(1), 505-524. google scholar
  • Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6 (100114), 1-10. https://doi.org/10.1016/j.mlwa.2021.100114 google scholar
  • AWS. (2024). Available, https://aws.amazon.com/tr/comprehend/, Accessed on, Mar. 01, 2024. google scholar
  • Benzaghta, M. A., Elwalda, A., Mousa, M. M., Erkan, I., & Rahman, M. (2021). SWOT analysis applications: An integrative literature review. Journal of Global Business Insights. 6, 1, 54-72. google scholar
  • Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python: O'Reilly Media, Inc. google scholar
  • Büyükeke, A., Sökmen, A., & Gencer, C. (2020). Metin Madenciliği ve Duygu Analizi Yöntemleri ile Sosyal Medya Verilerinden Rekabetçi Avantaj Elde Etme: Turizm Sektöründe Bir Araştırma. Journal of Tourism and Gastronomy Studies, 8(1), 322-335. doi:10.21325/jotags.2020.550 google scholar
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Paper presented at the KDD ’16, San Francisco, CA, USA. google scholar
  • Çekal, N., & Aktürk, H. (2019). Gaziantep mutfağına özgü çorbalara ilişkin müşteri değerlendirmelerinin incelenmesi. Journal of Tourism and Gastronomy Studies, 7(2), 1488–1498. https://doi.org/10.21325/jotags.2019.431 google scholar
  • Çevik, F., & Kilimci, Z. (2021). Derin öğrenme yöntemleri ve kelime yerleştirme modelleri kullanılarak Parkinson hastalığının duygu analiziyle değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi (PAJES), 27(2), 151–161. google scholar
  • Demirbilek, M., & Özulukale Demirbilek, S. (2023). Google Yorumları Üzerinden Makine Öğrenme Yöntemleri ve Amazon Comprehend ile Duygu Analizi: İç Anadoluda Bir Üniversite Örneği. Üniversite Araştırmaları Dergisi, 6(4), 452-461. https://doi.org/10.32329/uad.1383794 google scholar
  • Doaa Mohey El-Din Mohamed, H. (2018). A survey on sentiment analysis challenges. Journal of King Saud University - Engineering Sciences, 30(4), 330-338. https://doi.org/10.1016/j.jksues.2016.04.002 google scholar
  • Duarte Alonso, A., O'neill, M., Liu, Y., & O'shea, M. (2013). Factors driving consumer restaurant choice: An exploratory study from the Southeastern United States. Journal of Hospitality Marketing & Management, 22(5), 547-567. google scholar
  • Duman, E. (2022). Implementation of XGBoost Method for Healthcare Fraud Detection. Scientific Journal of Mehmet Akif Ersoy University, 5(2), 69-75. google scholar
  • Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd Edition ed.): O'Reilly Media, Inc. google scholar
  • Gündüz, H. (2023). Derin Transformatörlerden Çift Yönlü Kodlayıcı Temsilleri ve Destek Vektör Makineleri ile Türkçe Film Yorumları Üzerine Duygu Analizi. KSÜ Mühendislik Bilimleri Dergisi, 26(2), 542-549. google scholar
  • Ha, J., & Jang, S. S. (2010). Effects of service quality and food quality: The moderating role of atmospherics in an ethnic restaurant segment. International Journal of Hospitality Management, 29(3), 520-529. google scholar
  • Hamad, M. M., Salih, M. A., & Jaleel, R. A. (2021). Sentiment analysis of restaurant reviews in social media using Naïve Bayes. Applications of Modelling and Simulation, 5, 166-172. google scholar
  • Hossain, N., Bhuiyan, M. R., Tumpa, Z. N., & Hossain, S. A. (2020, 1–3 July 2020). Sentiment analysis of restaurant reviews using combined CNN-LSTM. Paper presented at the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India. google scholar
  • Instant Data Scraper. (2024). Available, https://chrome.google.com/webstore/detail/instant-data-scraper/ofaokhiedipichpaobibbnahnkdoiiah, Accessed on, Feb. 20, 2024. google scholar
  • Jonathan, B., Sihotang, J. I., & Martin, S. (2019, October). Sentiment analysis of customer reviews in zomato bangalore restaurants using random forest classifier. Paper presented at the International Scholars Conference. google scholar
  • Kang, H., Yoo, S. J., & Han, D. (2012). Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Systems with Applications, 39(5), 6000-6010. google scholar
  • Kecman, V. (2005). Support vector machines: theory and applications: Springer Berlin Heidelberg. google scholar
  • Korkmaz, A., & Bulut, S. (2023). Social Media Sentiment Analysis for Solar Eclipse with Text Mining. Acta Infologica, 7(1). doi:https://doi.org/10.26650/acin.1207100 google scholar
  • Köksal, B., Erdem, G., Türkeli, C., & Kamışlı Öztürk, Z. (2021). Twitter’da Duygu Analizi Yöntemi Kullanılarak Bitcoin Değer Tahminlemesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 280-297. doi:10.29130/dubited.792909 google scholar
  • Madsen, D. Ø. (2016). SWOT analysis: A management fashion perspective. International Journal of Business Research, 16(1), 39-56. google scholar
  • McIntyre‐Bhatty, Y. T. (2000). Neural network analysis and the characteristics of market sentiment in the financial markets. Expert Systems, 17(4), 191-198. google scholar
  • Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment Analysis Algorithms and Applications: A Survey. Ain Shams Engineering Journal, 5, 1093-1113. doi:http://dx.doi.org/10.1016/j.asej.2014.04.011 google scholar
  • NLTK. (2024). Available, https//www.nltk.org/, Accessed on, Feb. 20, 2024. google scholar
  • OpenAI. (2024). ChatGPT (Mar 14 version) [Large language model]. Available, [suspicious link removed], Accessed on, Apr. 15, 2024. google scholar
  • Özel, M., & Çetinkaya Bozkurt, Ö. (2024). Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data. Acta Infologica, 8(1), 23-33. https://doi.org/10.26650/acin.1418834 google scholar
  • Özen, İ. A. (2021). Yerel Restoranların Değerlendirilmesinde Fikir Madenciliği: Gaziantep Örneği (Opinion Mining in the Evaluation of Local Restaurants: The Case of Gaziantep). Journal of Tourism & Gastronomy Studies, 9(1), 377-391. google scholar
  • Öztürk, S. (2022). Bipolar Bozukluk Manik Atak Tanılı Hastaların Atak Şiddetinin Video Tabanlı Duygu Analizi ile Değerlendirilmesi. (Doktora Tezi), Trakya Üniversitesi Edirne. google scholar
  • Peters, C. M. (2024). The Power of Google Reviews for Restaurant Marketing. Available, https://restaurantsmarketing.com.au/blog/the-power-of-google-reviews-for-restaurant-marketing/#:~:text=Google%20reviews%20are%20extremely%20important,to%20rank%20in%20search%20results, Accessed on, Jan. 31, 2024. google scholar
  • Pisner, D. A., & Schnyer, D. M. (2020). Chapter 6 - Support vector machine. In A. Mechelli & S. Vieira (Eds.), Machine learning (pp. 101-121). google scholar
  • Ponnam, A., & Balaji, M. S. (2014). Matching visitation-motives and restaurant attributes in casual dining restaurants. International journal of hospitality management, 37, 47-57. google scholar
  • Renganathan, V., & Upadhya, A. (2021). Dubai restaurants: A sentiment analysis of tourist reviews. Academica Turistica - Tourism and Innovation Journal, 14(2). doi:https://doi.org/10.26493/2335-4194.14.165-174 google scholar
  • Rita, P., Vong, C., Pinheiro, F., & Mimoso, J. (2023). A sentiment analysis of Michelin-starred restaurants. European Journal of Management and Business Economics, 32(3), 276-295. google scholar
  • Rozmi, A. N. A., Nordin, A., & Bakar, M. I. A. (2018). The perception of ICT adoption in small medium enterprise: A SWOT analysis. International Journal of Innovation Business Strategy, 19(1), 69-79. google scholar
  • Scikit-learn (2025). Available, https://scikit-learn.org/stable/supervised_learning.html, Accessed on, May. 25, 2025 google scholar
  • Shin, B., Ryu, S., Kim, Y., & Kim, D. (2022). Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis Journal of Multimedia Information System, 9(1), 61-68. google scholar
  • Singgalen, Y. A. (2022). Sentiment Analysis on Customer Perception towards Products and Services of Restaurant in Labuan Bajo Journal of Information Systems and Informatics, 4(3), 511-523. google scholar
  • Tuna, M. F. (2022). Mobil Uygulama Müşteri Geri Bildirimindeki Duyguların Makine Öğrenmesi Yöntemleriyle Sınıflandırılması. Journal of Business and Communication Studies, 1(1), 83-103. http://dx.doi.org/10.29228/jobacs.63080 google scholar
  • Uçuk, C., & Kayran, M. (2020). Gaziantep mutfağının tarihsel gelişimi: Milli mücadele döneminde Gaziantep’te yeme içme faaliyetleri. Safran Kültür ve Turizm Araştırmaları Dergisi, 3(2), 258–272. google scholar
  • Ustabulut, M. Y. (2021). SWOT Analysis for the Distance Education Process of Lecturers Teaching Turkish as a Foreign Language. Educational Policy Analysis and Strategic Research, 16(1), 139-152. https://doi.org/10.29329/epasr.2020.334.8 google scholar
  • Uyaroğlu Akdeniz, F. N., & Cebeci, H. İ. (2021). Belediye Hizmetlerin Değerlendirilmesinde Duygu Analizi Yaklaşımı: Sakarya İli Örneği. Zeki Sistemler Teori ve Uygulamaları Dergisi, 4(2), 127-135. doi:10.38016/jista.932762 google scholar
  • Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. doi:https://doi.org/10.1007/s10462-022-10144-1 google scholar
  • Web of Science (2024), https://www.webofscience.com/, Accessed on, Feb. 20, 2024. google scholar
  • XGBoost. (2025, May 25). XGBoost Python Package Python Package Introduction. https://xgboost.readthedocs.io/en/stable/python/python_intro.html google scholar
  • Ylimaki, E. (2024). Why Google Restaurant Reviews Are a Must, Available https://trustmary.com/reviews/why-google-restaurant-reviews-are-a-must/, Accessed on, Jan. 31, 2024. google scholar
  • Yu, B., Zhou, J., Zhang, Y., & Cao, Y. (2017). Identifying restaurant features via sentiment analysis on yelp reviews. arXiv preprint arXiv:1709.08698, 1-6. google scholar
  • Yu, T., Rita, P., Moro, S., & Oliveira, C. (2022). Insights from sentiment analysis to leverage local tourism business in restaurants. International Journal of Culture, Tourism and Hospitality Research, 16(1), 321-336. google scholar
  • Yüksel, A. S., & Tan, F. G. (2018). Metin Madenciliği Teknikleri ile Sosyal Ağlarda Bilgi Keşfi. Mühendislik Bilimleri ve Tasarım Dergisi, 6(2), 324-333. https://doi.org/10.21923/jesd.384791 google scholar
  • Zeng, B. (2013). Social Media in Tourism. J Tourism Hospit 2(1), 1-2. http://dx.doi.org/10.4172/2167-0269.1000e125 google scholar
  • Zhou, X., Wan, X., & Xiao, J. (2016, November 1-5, 2016). Attention-based LSTM network for cross-lingual sentiment classification, Austin, Texas. google scholar
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bağlam Öğrenimi, Derin Öğrenme, Doğal Dil İşleme, İş Bilgi Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Demirbilek 0000-0002-1520-2882

Sevim Özulukale Demirbilek 0000-0002-5868-5327

Gönderilme Tarihi 21 Nisan 2025
Kabul Tarihi 3 Ekim 2025
Yayımlanma Tarihi 31 Aralık 2025
DOI https://doi.org/10.26650/acin.1681039
IZ https://izlik.org/JA89DZ79GH
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Demirbilek, M., & Özulukale Demirbilek, S. (2025). Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models. Acta Infologica, 9(2), 491-511. https://doi.org/10.26650/acin.1681039
AMA 1.Demirbilek M, Özulukale Demirbilek S. Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models. ACIN. 2025;9(2):491-511. doi:10.26650/acin.1681039
Chicago Demirbilek, Mustafa, ve Sevim Özulukale Demirbilek. 2025. “Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models”. Acta Infologica 9 (2): 491-511. https://doi.org/10.26650/acin.1681039.
EndNote Demirbilek M, Özulukale Demirbilek S (01 Aralık 2025) Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models. Acta Infologica 9 2 491–511.
IEEE [1]M. Demirbilek ve S. Özulukale Demirbilek, “Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models”, ACIN, c. 9, sy 2, ss. 491–511, Ara. 2025, doi: 10.26650/acin.1681039.
ISNAD Demirbilek, Mustafa - Özulukale Demirbilek, Sevim. “Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models”. Acta Infologica 9/2 (01 Aralık 2025): 491-511. https://doi.org/10.26650/acin.1681039.
JAMA 1.Demirbilek M, Özulukale Demirbilek S. Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models. ACIN. 2025;9:491–511.
MLA Demirbilek, Mustafa, ve Sevim Özulukale Demirbilek. “Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models”. Acta Infologica, c. 9, sy 2, Aralık 2025, ss. 491-1, doi:10.26650/acin.1681039.
Vancouver 1.Demirbilek M, Özulukale Demirbilek S. Restaurant Review Sentiment and SWOT Analysis: using AWS and GPT-4 Large Language Models. ACIN [Internet]. 01 Aralık 2025;9(2):491-51. Erişim adresi: https://izlik.org/JA89DZ79GH