Araştırma Makalesi
BibTex RIS Kaynak Göster

Hastane Mikoflorası; Su, Yüzey ve Hava

Yıl 2026, Cilt: 7 Sayı: 1, 127 - 136, 31.01.2026
https://doi.org/10.47482/acmr.1675216

Öz

Giriş/amaç: Hastane ortamları çok çeşitli mikroorganizmaları barındırır. Bu ortamlardaki bakteri, virüs ve mantarlar hastalarda ciddi sağlık hizmeti ile ilişkili enfeksiyonlara (HCAI) yol açabilir. Bu çalışmanın amacı, hastane havası, suyu ve yüzeylerinde mantar türlerinin dağılımını değerlendirerek hastanenin mikoflorasını ortaya koymaktır.

Gereç ve yöntem: 2022-2023 yılları arasında beş aylık bir dönemde Gazi Üniversitesi Hastanesi’nde hava, su ve yüzeylerden mantar örnekleri aktif hava örnekleme yöntemi, su toplama ve yüzey sürüntüsü yöntemleri ile alınmıştır. Toplam 22 klinikten 110 hava örneği, 66 su örneği ve 45 yüzey örneği toplanmıştır.
Bulgular: 22 klinikten alınan 110 hava örneğinden toplam 1802 küf kolonisi izole edilmiştir. İç ortam hava kontaminasyon oranı %82,1 (ortalama 14 koloni/500 L), dış ortam ise %93,8 (ortalama 31,4 koloni/500 L) olarak bulunmuştur. İç ortam havasında en yaygın tür Penicillium spp. iken, dış ortamda Cladosporium spp. baskın bulunmuştur. Mevsimsel olarak mantarlardaki değişim istatistiksel olarak anlamlı bulunmamıştır (p ≥ 0.05). Su örneklerinde %26 oranında, özellikle Penicillium, Exophiala ve Aspergillus spp. olmak üzere mantar üremesi saptanmıştır. Yüzey örneklerinin yalnızca %6’sı kontamine olarak belirlenmiştir. Toprak örneklerinden bol miktarda Cladosporium izole edilmiş olup, Cunninghamella ve Rhizopus yalnızca toprakta saptanmıştır. Toplamda 13 farklı mantar cinsi tanımlanmış olup en yaygınları Penicillium ve Cladosporium olmuştur.
Sonuç: Bulgular, özellikle hava ve su kaynaklarının çeşitli mantar cinsleriyle – başta Penicillium ve Cladosporium – önemli ölçüde kolonize olduğunu göstermektedir. Bu durum, potansiyel nozokomiyal riskleri azaltmak için düzenli çevresel mikolojik izlemenin önemini vurgulamaktadır.

Kaynakça

  • Quaranta G, Di Pumpo M, La Milia D, et al. A management model for Hospital Hygiene Unit: evidence-based proactive surveillance of potential environmental sources of infection in order to prevent patient's risk. J Prev Med Hyg. 2021;61:E628‑E635.
  • Lemiech-Mirowska E, Kiersnowska ZM, Michałkiewicz M, Depta A, Marczak M. Nosocomial infections as one of the most important problems of healthcare system. Ann Agric Environ Med. 2021;28:361‑366. Cruz-López F, Martínez-Meléndez A, Garza-González E. How does hospital microbiota contribute to healthcare-associated infections? Microorganisms. 2023;11:192.
  • Facciolà A, Pellicanò G, Visalli G, et al. The role of the hospital environment in the healthcare-associated infections: a general review of the literature. Eur Rev Med Pharmacol Sci. 2019;23:1266‑1278.
  • Martino R, Subira M. Invasive fungal infections in hematology: new trends. Ann Hematol. 2022;81:233‑243. Mesquita-Rocha S, Godoy-Martinez PC, Gonçalves SS, et al. The water supply system as a potential source of fungal infection in paediatric haematopoietic stem cell units. BMC Infect Dis. 2013;13:1‑8.
  • Ertegal V, Salazar-González C, Castro-Alonso MJ, González-López Ó, López-González E, Fernández-Llorente MJ, et al. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hospital indoor air. Environ Res. 2023;216:114458.
  • Aleem M, Azeem AR, Rahmatullah S, Vohra S, Nasir S, Andleeb S. Prevalence of bacteria and antimicrobial resistance genes in hospital water and surfaces. Cureus. 2021;13(10):e18738.
  • van der Zwet WC, Nijsen IEJ, Jamin C, et al. Role of the environment in transmission of gram-negative bacteria in two consecutive outbreaks in a haematology-oncology department. Infect Prev Pract. 2022;4:100209.
  • Sabuco-Tébar EA, Arense-Gonzalo JJ, Campayo-Rojas FJ. Evaluation of the results of a periodic environmental biosecurity assessment program on air quality in controlled environment rooms of hospitals. HERD. 2023;16:161‑174.
  • Maphossa V, Langa JC, Simbine S, et al. Environmental bacterial and fungal contamination in high touch surfaces and indoor air of a paediatric intensive care unit in Maputo Central Hospital, Mozambique in 2018. Infect Prev Pract. 2022;4:100250.
  • Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ Int. 2018;113:74‑90.
  • Habibi N, Uddin S, Behbehani M, et al. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front Microbiol. 2022;13:955913.
  • Heutte N, André V, Dubos Arvis C, et al. Assessment of multi-contaminant exposure in a cancer treatment center: a 2-year monitoring of molds, mycotoxins, endotoxins, and glucans in bioaerosols. Environ Monit Assess. 2017;189:31.
  • Rinawati W, Kumalawati J. Sphingomonas paucimobilis infection in subcutaneous abdominal preservation of bone flap after craniotomy. J Infect Dev Ctries. 2022;16:388‑391.
  • Nakade J, Nakamura Y, Katayama Y, et al. Systematic active environmental surveillance successfully identified and controlled the Legionella contamination in the hospital. J Infect Chemother. 2023;29:43‑47.
  • Badiee P, Boekhout T, Zarei Mahmoudabadi A, et al. Multicenter study of susceptibility of Aspergillus species isolated from Iranian university hospitals to seven antifungal agents. Microbiol Spectr. 2022;10(3):e0253921.
  • Eaton AD, Clesceri LS, Greenberg AE, eds. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC: American Public Health Association; 1998.
  • Centers for Disease Control and Prevention (CDC). Environmental sampling. 2020 (cited 2024 Jul 27). Available from: https://www.cdc.gov/infection-control/hcp/environmental-control/environmental-sampling.html de Hoog GS, Guarro J, Gené J, et al. Atlas of Clinical Fungi. 4th ed. Foundation Atlas of Clinical Fungi; 2020.
  • Mahon CR, Lehman DC, Manuselis G. Bailey & Scott’s Diagnostic Microbiology. 14th ed. St. Louis, MO: Elsevier; 2018.
  • WHO fungal priority pathogens list to guide research, development and public health action. https://iris.who.int/bitstream/handle/10665/363682/9789240060241-eng.pdf
  • Alghamdi W, Neamatallah AA, Alshamrani MM, Al Mehmadi F, El-Saed A. Distribution and the trend of airborne particles and bio-aerosol concentration in pediatric intensive care units with different ventilation settings. J Infect Public Health. 2023;16:588‑595.
  • Demirel R, Sen B, Kadaifciler D, et al. Indoor airborne fungal pollution in newborn units in Turkey. Environ Monit Assess. 2017;189:362.
  • Okten S, Asan A. Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital. Environ Monit Assess. 2012;184(3):1739‑1751.
  • Karaaltı İ. Hastane Ortam Havası ve Su Kaynaklarında Fungal Kontaminasyonun Araştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi Sağlık Bilimleri Enstitüsü; 2019.
  • Kim KY, Kim YS, Kim D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind Health. 2010;48:236‑243.
  • Cho SY, Myong JP, Kim WB, et al. Profiles of environmental mold: indoor and outdoor air sampling in a hematology hospital in Seoul, South Korea. Int J Environ Res Public Health. 2018;15:2560.
  • Guinea J, Peláez T, Alcalá L, Bouza E. Outdoor environmental levels of Aspergillus spp. conidia over a wide geographical area. Med Mycol. 2006;44:349‑356.
  • Caggiano G, Napoli C, Coretti C, et al. Mold contamination in a controlled hospital environment: a 3-year surveillance in southern Italy. BMC Infect Dis. 2014;14:595.
  • Fragola M, Perrone MR, Alifano P, Talà A, Romano S. Seasonal variability of the airborne eukaryotic community structure at a coastal site of the central Mediterranean. Toxins (Basel). 2021;13:518.
  • Rufino de Sousa N, Steponaviciute L, Margerie L, et al. Plaque-forming units from air samples: Letter to Editor. Re: Jefferson et al., Indoor Air. 2022;32:e13169.
  • Wang S, Qian H, Sun Z, Cao G, Ding P, Zheng X. Comparison of airborne bacteria and fungi in different built environments in selected cities in five climate zones of China. Sci Total Environ. 2022;160445.
  • Pertegal V, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hospital indoor air. Environ Res. 2023;216(Pt 1):114458.
  • Willis C, Nye K, Aird H, Lamph D, Fox A. Examining food, water and environmental samples from healthcare environments. Microbiological Guidelines, Public Health England; 2013.
  • Taudien S, Leszczynski W, Mayer T, et al. Misidentification as Pseudomonas aeruginosa in hospital water supply samples. J Hosp Infect. 2023;133:23‑27.
  • Davidova-Gerzova L, Lausova J, Sukkar I, et al. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol. 2023;13:1184081.
  • Arroyo MG, Ferreira AM, Frota OP, et al. Broad diversity of fungi in hospital water. Sci World J. 2020;9358542.

Mycoflora of the hospital; water, surface and air

Yıl 2026, Cilt: 7 Sayı: 1, 127 - 136, 31.01.2026
https://doi.org/10.47482/acmr.1675216

Öz

Background: Hospital indoor environments contain a wide variety of microorganisms. Bacteria, viruses, and fungi in these environments can cause serious healthcare-associated infections in patients. The aim of this study is to show the mycoflora of the hospital by evaluating the distribution of fungal species in hospital indoor air, water, and surfaces.
Methods: Air, water, and surface were sampled for fungi at Gazi University Hospital, using active air method, water collection, and swabbing, during a five-month period in 2022-2023. A total of 22 hospital wards were surveyed; overall, 110 air samples, 66 water samples, and 45 surface samples were collected.
Results: A total of 1331 fungal colonies were isolated from indoor air, predominantly Penicillium (57.7%) and Cladosporium (31.6%). From outdoor air (n = 471), Cladosporium (66.9%) and Penicillium (22.5%) were most common. Median colony counts per 500 L of air were 11.5 indoors and 30.0 outdoors (range: 4–21.1 and 9–55.6, respectively. Fungal diversity, as evaluated by the Shannon index, peaked in March for both environments. Fungal growth was observed in 17 of 66 water samples (26.0%), with a total of 225 colonies recovered. Penicillium spp. accounted for the majority (85.7%), followed by Exophiala (8.0%) and Aspergillus (5.0%).Among 45 surface samples, only 3 (6.0%) yielded fungal isolates, indicating low environmental fungal burden on high-touch surfaces.
Conclusion: The findings demonstrate that hospital environments, especially air and water sources, are significantly colonized by diverse fungal genera—predominantly Penicillium and Cladosporium—highlighting the importance of routine environmental mycological monitoring to mitigate potential nosocomial risks.

Etik Beyan

Ethical approval was obtained from Gazi University Ethics Committee on 09.03.2023/meeting no:4 (E-77082166-604.01.02-622780).

Destekleyen Kurum

There was no funding.

Teşekkür

Much appreciation to all people who participated in this study. We also acknowledge all members of Gazi University Infection Control Committee who contributed to the data collection. This study was presented as a poster at the 11th Trends in Medical Mycology (TIMM-11) congress.

Kaynakça

  • Quaranta G, Di Pumpo M, La Milia D, et al. A management model for Hospital Hygiene Unit: evidence-based proactive surveillance of potential environmental sources of infection in order to prevent patient's risk. J Prev Med Hyg. 2021;61:E628‑E635.
  • Lemiech-Mirowska E, Kiersnowska ZM, Michałkiewicz M, Depta A, Marczak M. Nosocomial infections as one of the most important problems of healthcare system. Ann Agric Environ Med. 2021;28:361‑366. Cruz-López F, Martínez-Meléndez A, Garza-González E. How does hospital microbiota contribute to healthcare-associated infections? Microorganisms. 2023;11:192.
  • Facciolà A, Pellicanò G, Visalli G, et al. The role of the hospital environment in the healthcare-associated infections: a general review of the literature. Eur Rev Med Pharmacol Sci. 2019;23:1266‑1278.
  • Martino R, Subira M. Invasive fungal infections in hematology: new trends. Ann Hematol. 2022;81:233‑243. Mesquita-Rocha S, Godoy-Martinez PC, Gonçalves SS, et al. The water supply system as a potential source of fungal infection in paediatric haematopoietic stem cell units. BMC Infect Dis. 2013;13:1‑8.
  • Ertegal V, Salazar-González C, Castro-Alonso MJ, González-López Ó, López-González E, Fernández-Llorente MJ, et al. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hospital indoor air. Environ Res. 2023;216:114458.
  • Aleem M, Azeem AR, Rahmatullah S, Vohra S, Nasir S, Andleeb S. Prevalence of bacteria and antimicrobial resistance genes in hospital water and surfaces. Cureus. 2021;13(10):e18738.
  • van der Zwet WC, Nijsen IEJ, Jamin C, et al. Role of the environment in transmission of gram-negative bacteria in two consecutive outbreaks in a haematology-oncology department. Infect Prev Pract. 2022;4:100209.
  • Sabuco-Tébar EA, Arense-Gonzalo JJ, Campayo-Rojas FJ. Evaluation of the results of a periodic environmental biosecurity assessment program on air quality in controlled environment rooms of hospitals. HERD. 2023;16:161‑174.
  • Maphossa V, Langa JC, Simbine S, et al. Environmental bacterial and fungal contamination in high touch surfaces and indoor air of a paediatric intensive care unit in Maputo Central Hospital, Mozambique in 2018. Infect Prev Pract. 2022;4:100250.
  • Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ Int. 2018;113:74‑90.
  • Habibi N, Uddin S, Behbehani M, et al. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front Microbiol. 2022;13:955913.
  • Heutte N, André V, Dubos Arvis C, et al. Assessment of multi-contaminant exposure in a cancer treatment center: a 2-year monitoring of molds, mycotoxins, endotoxins, and glucans in bioaerosols. Environ Monit Assess. 2017;189:31.
  • Rinawati W, Kumalawati J. Sphingomonas paucimobilis infection in subcutaneous abdominal preservation of bone flap after craniotomy. J Infect Dev Ctries. 2022;16:388‑391.
  • Nakade J, Nakamura Y, Katayama Y, et al. Systematic active environmental surveillance successfully identified and controlled the Legionella contamination in the hospital. J Infect Chemother. 2023;29:43‑47.
  • Badiee P, Boekhout T, Zarei Mahmoudabadi A, et al. Multicenter study of susceptibility of Aspergillus species isolated from Iranian university hospitals to seven antifungal agents. Microbiol Spectr. 2022;10(3):e0253921.
  • Eaton AD, Clesceri LS, Greenberg AE, eds. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington, DC: American Public Health Association; 1998.
  • Centers for Disease Control and Prevention (CDC). Environmental sampling. 2020 (cited 2024 Jul 27). Available from: https://www.cdc.gov/infection-control/hcp/environmental-control/environmental-sampling.html de Hoog GS, Guarro J, Gené J, et al. Atlas of Clinical Fungi. 4th ed. Foundation Atlas of Clinical Fungi; 2020.
  • Mahon CR, Lehman DC, Manuselis G. Bailey & Scott’s Diagnostic Microbiology. 14th ed. St. Louis, MO: Elsevier; 2018.
  • WHO fungal priority pathogens list to guide research, development and public health action. https://iris.who.int/bitstream/handle/10665/363682/9789240060241-eng.pdf
  • Alghamdi W, Neamatallah AA, Alshamrani MM, Al Mehmadi F, El-Saed A. Distribution and the trend of airborne particles and bio-aerosol concentration in pediatric intensive care units with different ventilation settings. J Infect Public Health. 2023;16:588‑595.
  • Demirel R, Sen B, Kadaifciler D, et al. Indoor airborne fungal pollution in newborn units in Turkey. Environ Monit Assess. 2017;189:362.
  • Okten S, Asan A. Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital. Environ Monit Assess. 2012;184(3):1739‑1751.
  • Karaaltı İ. Hastane Ortam Havası ve Su Kaynaklarında Fungal Kontaminasyonun Araştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi Sağlık Bilimleri Enstitüsü; 2019.
  • Kim KY, Kim YS, Kim D. Distribution characteristics of airborne bacteria and fungi in the general hospitals of Korea. Ind Health. 2010;48:236‑243.
  • Cho SY, Myong JP, Kim WB, et al. Profiles of environmental mold: indoor and outdoor air sampling in a hematology hospital in Seoul, South Korea. Int J Environ Res Public Health. 2018;15:2560.
  • Guinea J, Peláez T, Alcalá L, Bouza E. Outdoor environmental levels of Aspergillus spp. conidia over a wide geographical area. Med Mycol. 2006;44:349‑356.
  • Caggiano G, Napoli C, Coretti C, et al. Mold contamination in a controlled hospital environment: a 3-year surveillance in southern Italy. BMC Infect Dis. 2014;14:595.
  • Fragola M, Perrone MR, Alifano P, Talà A, Romano S. Seasonal variability of the airborne eukaryotic community structure at a coastal site of the central Mediterranean. Toxins (Basel). 2021;13:518.
  • Rufino de Sousa N, Steponaviciute L, Margerie L, et al. Plaque-forming units from air samples: Letter to Editor. Re: Jefferson et al., Indoor Air. 2022;32:e13169.
  • Wang S, Qian H, Sun Z, Cao G, Ding P, Zheng X. Comparison of airborne bacteria and fungi in different built environments in selected cities in five climate zones of China. Sci Total Environ. 2022;160445.
  • Pertegal V, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Understanding the influence of the bioaerosol source on the distribution of airborne bacteria in hospital indoor air. Environ Res. 2023;216(Pt 1):114458.
  • Willis C, Nye K, Aird H, Lamph D, Fox A. Examining food, water and environmental samples from healthcare environments. Microbiological Guidelines, Public Health England; 2013.
  • Taudien S, Leszczynski W, Mayer T, et al. Misidentification as Pseudomonas aeruginosa in hospital water supply samples. J Hosp Infect. 2023;133:23‑27.
  • Davidova-Gerzova L, Lausova J, Sukkar I, et al. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol. 2023;13:1184081.
  • Arroyo MG, Ferreira AM, Frota OP, et al. Broad diversity of fungi in hospital water. Sci World J. 2020;9358542.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Mikrobiyoloji
Bölüm Araştırma Makalesi
Yazarlar

Elif Ayça Şahin 0000-0002-2215-2756

Sidre Erganiş 0000-0002-8068-796X

Halil Furkan Martlı 0000-0002-9696-8539

Beyza Yavuz 0000-0002-9508-4432

Sena Algın 0000-0002-7323-6319

Doç. Dr. Özlem Güzel Tunçcan 0000-0003-1611-0725

Murat Dizbay 0000-0003-4120-0781

Kayhan Çağlar 0000-0001-7257-6453

Hasan Bostancı 0000-0002-3160-1488

Ayşe Kalkancı 0000-0003-0961-7325

Gönderilme Tarihi 16 Nisan 2025
Kabul Tarihi 6 Ağustos 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 7 Sayı: 1

Kaynak Göster

APA Şahin, E. A., Erganiş, S., Martlı, H. F., … Yavuz, B. (2026). Mycoflora of the hospital; water, surface and air. Archives of Current Medical Research, 7(1), 127-136. https://doi.org/10.47482/acmr.1675216

Archives of Current Medical Research (ACMR), araştırmaları ücretsiz sunmanın daha büyük bir küresel bilgi alışverişini desteklediğini göz önünde bulundurarak, tüm içeriğe anında açık erişim sağlar. Kamunun erişimine açık olması, daha büyük bir küresel bilgi alışverişini destekler.

http://www.acmronline.org/