Derleme
BibTex RIS Kaynak Göster

Virology, Immunity and Vaccine Development of SARS-CoV-2

Yıl 2021, , 5 - 13, 29.01.2021
https://doi.org/10.47482/acmr.2021.8

Öz

Since the last months of 2019, the COVID-19 pandemic caused by SARS-CoV-2, a brand new coronavirus, catches our attention on our agenda as it harms economic and socio-cultural structures almost all around the world. For the elimination of SARS-CoV-2, there has to be an effective and sufficient immune response that includes innate and adaptive immunity against the virus. Also, this immunity should help us to prevent and control the infection. However, there are some complications about our body’s response to this virus: Hyperactivation of the immune response can cause tissue damage and organ failures. On the other hand, immunodeficiency is one of the major obstacles to the elimination of the virus. Type I IFN response is essential for COVID-19 disease. Some of the SARS-CoV-2 infection pathogenesis is caused by delay, deficiency, or inhibition of IFN release. The infection
can be limited if type I IFN is secreted early and adequately. The overproduction of pro-inflammatory cytokines (such as IL-1, IL-6, and TNFα), neutrophilia, and lymphopenia is associated with COVID-19 disease severity and mortality in patients. Our current understanding of SARS-CoV-2 immunity is still limited. Further clarification of the immunopathogenesis of COVID-19 disease will guide us in both diagnosis and treatment. It will also shed light on new drugs and vaccine studies. Therefore, extensive researches on the host immune response against SARS-CoV-2 are still necessary.

Kaynakça

  • 1. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502.
  • 2. Tanriverdi ES, Yakupoğulları Y, Otlu B. COVID-19 etkeninin özellikleri. Çiçek C, editör Mikrobiyoloji ve COVID-19 1. Baskı Ankara: Türkiye Klinikleri;. 2020:7-14.
  • 3. İnal AS, Duman ZG, Kurtaran B. SARS-CoV-2 Mikrobiyoloji ve Patogenez. AKTD. 2020;29(Özel Sayı):11-23.
  • 4. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14(8):523.
  • 5. WHO. Middle East respiratory syndrome. Available at: http:// www.emro.who.int/health-topics/mers-cov/mers-outbreaks. html/ Accessed December 26, 2020.
  • 6. JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) Available at: https://gisanddata.maps.arcgis.com/apps/opsdashboard/ index.html#/bda7594740fd40299423467b48e9ecf6 Accessed on December 29, 2020.
  • 7. Çiçek C. Epidemiyoloji. 2020;Çiçek C, editör. Mikrobiyoloji ve COVID-19. 1.Baskı. Ankara: Türkiye Klinikleri; 2020:1-6.
  • 8. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ Accessed on December 20, 2020.
  • 9. T.C. Sağlık Bakanlığı. Türkiye COVID-19 Hastalık Tablosu. Available at: https://covid19.saglik.gov.tr/ Accessed on December 25, 2020.
  • 10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020; 383:2603-2615
  • 11. WHO. Draft landscape and tracker of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/ item/draft-landscape-of-covid-19-candidate-vaccines/ Accessed on December 20, 2020.
  • 12. NIH. Promising Interim Results from Clinical Trial of NIH-Moderna COVID-19 Vaccine. Available at: https://www.nih.gov/newsevents/ news-releases/promising-interim-results-clinical-trial-nihmoderna- covid-19-vaccine/ Accessed on December 20, 2020.
  • 13. WHO. Draft landscape and tracker of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/ item/draft-landscape-of-covid-19-candidate-vaccines/ Accessed on December 30, 2020.
  • 14. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene reports. 2020:100682.
  • 15. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020.
  • 16. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3.
  • 17. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020:1-6.
  • 18. WHO. SARS-CoV-2 Variant – United Kingdom of Great Britain and Northern Ireland. Available at: https://www.who.int/csr/ don/21-december-2020-sars-cov2-variant-united-kingdom/en/ Accessed on December 26, 2020.
  • 19. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J medical virol. 2020;92(4):418-23.
  • 20. Kurtaran B, Oto Ö. COVID-19 Pathogenesis. In: Taşova Y, Çelen MK, editors. Coronavirus Disease 2019 (COVID-19): Turkey Perspective. Ankara/Turkey: Hipokrat Yayıncılık; 2020. p. 217.
  • 21. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
  • 22. Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)?. ClinChem Lab Med. 2020; 58(9): 1415-22.
  • 23. Alanagreh La, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020;9(5):331.
  • 24. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARSCoV- 2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020.
  • 25. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev and Rep. 2020; 16:434–40
  • 26. Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147- spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther.2020;5(1):1-10.
  • 27. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmunity. 2020:102433.
  • 28. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
  • 29. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):1-8.
  • 30. Quan C, Li C, Ma H, Li Y, Zhang H. Immunopathogenesis of Coronavirus-Induced Acute Respiratory Distress Syndrome (ARDS): Potential Infection-Associated Hemophagocytic Lymphohistiocytosis. Clin Microbiol Rev. 2020;34(1).
  • 31. Fidan I, Erganiş S. COVID-19 İmmünolojisi. Çiçek C, editör Mikrobiyoloji ve COVID-19 1.Baskı Ankara: Türkiye Klinikleri. 2020:74-82.
  • 32. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.
  • 33. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. MedRxiv. 2020.
  • 34. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools- Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020;217(6).
  • 35. Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol. 2020;11:2063.
  • 36. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv. Rheumatol. 2020;60(1):1-13.
  • 37. Stephens DS, McElrath MJ. COVID-19 and the Path to Immunity. Jama. 2020;324(13):1279-81.
  • 38. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020;5(10):1185-91.
  • 39. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev. 2020;35:43-9.
  • 40. Amanat F, Krammer F. SARS-CoV-2 vaccines: a status report. Immunity. 2020;52(4):583-9.
  • 41. Kuşcu F. Current Status of COVID-19 Vaccine Studies. In: Taşova Y, Çelen MK, editors. Coronavirus Disease Turkey Perspective. Ankara/ Turkey: Hipokrat Yayıncılık; 2020. p. 67-70.
  • 42. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020;20(10):615-32.
  • 43. Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020;5(1):1-14.
Yıl 2021, , 5 - 13, 29.01.2021
https://doi.org/10.47482/acmr.2021.8

Öz

Kaynakça

  • 1. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490-502.
  • 2. Tanriverdi ES, Yakupoğulları Y, Otlu B. COVID-19 etkeninin özellikleri. Çiçek C, editör Mikrobiyoloji ve COVID-19 1. Baskı Ankara: Türkiye Klinikleri;. 2020:7-14.
  • 3. İnal AS, Duman ZG, Kurtaran B. SARS-CoV-2 Mikrobiyoloji ve Patogenez. AKTD. 2020;29(Özel Sayı):11-23.
  • 4. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14(8):523.
  • 5. WHO. Middle East respiratory syndrome. Available at: http:// www.emro.who.int/health-topics/mers-cov/mers-outbreaks. html/ Accessed December 26, 2020.
  • 6. JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) Available at: https://gisanddata.maps.arcgis.com/apps/opsdashboard/ index.html#/bda7594740fd40299423467b48e9ecf6 Accessed on December 29, 2020.
  • 7. Çiçek C. Epidemiyoloji. 2020;Çiçek C, editör. Mikrobiyoloji ve COVID-19. 1.Baskı. Ankara: Türkiye Klinikleri; 2020:1-6.
  • 8. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ Accessed on December 20, 2020.
  • 9. T.C. Sağlık Bakanlığı. Türkiye COVID-19 Hastalık Tablosu. Available at: https://covid19.saglik.gov.tr/ Accessed on December 25, 2020.
  • 10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020; 383:2603-2615
  • 11. WHO. Draft landscape and tracker of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/ item/draft-landscape-of-covid-19-candidate-vaccines/ Accessed on December 20, 2020.
  • 12. NIH. Promising Interim Results from Clinical Trial of NIH-Moderna COVID-19 Vaccine. Available at: https://www.nih.gov/newsevents/ news-releases/promising-interim-results-clinical-trial-nihmoderna- covid-19-vaccine/ Accessed on December 20, 2020.
  • 13. WHO. Draft landscape and tracker of COVID-19 candidate vaccines. Available at: https://www.who.int/publications/m/ item/draft-landscape-of-covid-19-candidate-vaccines/ Accessed on December 30, 2020.
  • 14. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene reports. 2020:100682.
  • 15. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020.
  • 16. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3.
  • 17. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020:1-6.
  • 18. WHO. SARS-CoV-2 Variant – United Kingdom of Great Britain and Northern Ireland. Available at: https://www.who.int/csr/ don/21-december-2020-sars-cov2-variant-united-kingdom/en/ Accessed on December 26, 2020.
  • 19. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J medical virol. 2020;92(4):418-23.
  • 20. Kurtaran B, Oto Ö. COVID-19 Pathogenesis. In: Taşova Y, Çelen MK, editors. Coronavirus Disease 2019 (COVID-19): Turkey Perspective. Ankara/Turkey: Hipokrat Yayıncılık; 2020. p. 217.
  • 21. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372.
  • 22. Lippi G, Lavie CJ, Henry BM, Sanchis-Gomar F. Do genetic polymorphisms in angiotensin converting enzyme 2 (ACE2) gene play a role in coronavirus disease 2019 (COVID-19)?. ClinChem Lab Med. 2020; 58(9): 1415-22.
  • 23. Alanagreh La, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020;9(5):331.
  • 24. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARSCoV- 2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020.
  • 25. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev and Rep. 2020; 16:434–40
  • 26. Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147- spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther.2020;5(1):1-10.
  • 27. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmunity. 2020:102433.
  • 28. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2.
  • 29. Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):1-8.
  • 30. Quan C, Li C, Ma H, Li Y, Zhang H. Immunopathogenesis of Coronavirus-Induced Acute Respiratory Distress Syndrome (ARDS): Potential Infection-Associated Hemophagocytic Lymphohistiocytosis. Clin Microbiol Rev. 2020;34(1).
  • 31. Fidan I, Erganiş S. COVID-19 İmmünolojisi. Çiçek C, editör Mikrobiyoloji ve COVID-19 1.Baskı Ankara: Türkiye Klinikleri. 2020:74-82.
  • 32. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9.
  • 33. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. MedRxiv. 2020.
  • 34. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools- Lartigue J, Crawford JM, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 2020;217(6).
  • 35. Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X, et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol. 2020;11:2063.
  • 36. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv. Rheumatol. 2020;60(1):1-13.
  • 37. Stephens DS, McElrath MJ. COVID-19 and the Path to Immunity. Jama. 2020;324(13):1279-81.
  • 38. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 2020;5(10):1185-91.
  • 39. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev. 2020;35:43-9.
  • 40. Amanat F, Krammer F. SARS-CoV-2 vaccines: a status report. Immunity. 2020;52(4):583-9.
  • 41. Kuşcu F. Current Status of COVID-19 Vaccine Studies. In: Taşova Y, Çelen MK, editors. Coronavirus Disease Turkey Perspective. Ankara/ Turkey: Hipokrat Yayıncılık; 2020. p. 67-70.
  • 42. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020;20(10):615-32.
  • 43. Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020;5(1):1-14.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm REVIEW ARTICLE
Yazarlar

Sidre Erganiş Bu kişi benim 0000-0002-8068-796X

Gülendam Bozdayı 0000-0002-6036-6819

Yayımlanma Tarihi 29 Ocak 2021
Gönderilme Tarihi 23 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Erganiş, S., & Bozdayı, G. (2021). Virology, Immunity and Vaccine Development of SARS-CoV-2. Archives of Current Medical Research, 2(1), 5-13. https://doi.org/10.47482/acmr.2021.8

Archives of Current Medical Research (ACMR), araştırmaları ücretsiz sunmanın daha büyük bir küresel bilgi alışverişini desteklediğini göz önünde bulundurarak, tüm içeriğe anında açık erişim sağlar. Kamunun erişimine açık olması, daha büyük bir küresel bilgi alışverişini destekler.

http://www.acmronline.org/