Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Effect of pioglitazone on oxidative stress of skeletal muscle in the insulin resistance rat model induced by high sucrose diet

Yıl 2022, Cilt 3, Sayı 3, 241 - 246, 30.09.2022

Öz

Background: Metabolic syndrome is associated with some medical disorders such as central obesity, being overweight, insulin resistance and hypertension. This study was designed to determine the effect of pioglitazone on oxidative stress in the insulin resistance rat model.

Methods: In this study, the model was induced by high sucrose (935 mm) diet for 20 weeks. Three groups were used in the experiment. Control group received standard laboratory diet and drinking water. Metabolic syndrome induced group received 32% sucrose containing drinking water for 20 weeks. Pioglitazone-treated metabolic syndrome group has received pioglitazone treatment (30 mg/kg/day, via oral gavage) for two weeks at the end of the 18th week of metabolic syndrome group. After experimental period, skeletal muscle tissues were homogenized to measure important enzymes such as aspartate aminotransferase, lactate dehydrogenase and as the marker of oxidative stress; total-antioxidant-status, total-oxidant-status and malondialdehyde. Western blot technique was used to determine protein level of thioredoxin1.

Results: Aspartate aminotransferase and lactate dehydrogenase levels increased in metabolic syndrome group but pioglitazone treatment decreased these levels. In metabolic syndrome group the oxidative stress status increased but the treatment of pioglitazone decreased the level of oxidative stress in the skeletal muscle. In addition, thioredoxin1 decreased in metabolic syndrome group but administration of pioglitazone increased this level.

Conclusions: There was an elevated effect of oxidative stress in high sucrose fed rats but the treatment of pioglitazone improved glucose tolerance and insulin sensitivity.

Kaynakça

  • 1. Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension. 2005;45(5):828–33.
  • 2. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome: A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469–80.
  • 3. Scott CL. Diagnosis, prevention and intervention for the metabolic syndrome. Am J Cardiol. 2003;92:35–42.
  • 4. Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clinica Chimica Acta. 2006;368:1–19.
  • 5. Yeo YH, Lai YC. Redox regulation of metabolic syndrome: recent developments in skeletal muscle insulin resistance and non-alcoholic fatty liver disease (NAFLD). Curr Opin Physiol. 2019;9:79-86.
  • 6. Ohta Y, Kinugawa S, Matsushima S, Ono T, Sobirin MA, Inoue N, et al. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in post infarct heart failure. Am J Physiol Heart Circ Physiol. 2011;300:H1637-44.
  • 7. Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med. 2016;98:18-28.
  • 8. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type 2 diabetes. Diabetes. 1996;45:1661–9.
  • 9. Plosker GL, Faulds D. Troglitazone: a review of its use in the management of type 2 diabetes mellitus. Drugs. 1999;57:409–38.
  • 10. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinediones receptor. Diabetes. 1998;47:507–14.
  • 11. Bajaj M, Baig R, Suraamornkul S, Hardies LJ, Coletta DK, Cline GW, et al. Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:1916–23.
  • 12. Song GY, Gao Y, Wang C, Hardies LJ, Coletta DK, Cline GW, et al. Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats: a possible mechanism to prevent highfat-induced insulin resistance. Chin Med J (Engl). 2010;123:2384–91.
  • 13. Atalay M, Bilginoglu A, Kokkola T, Oksala N, Turan B. Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Mol Cell Biochem. 2011;351:125–31.
  • 14. Kakisaka Y, Nakashima T, Sumida Y, Yoh T, Nakamura H, Yodoi J, et al. Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm Met Res. 2002;34(3):160–4.
  • 15. Vasques AC, Rosado LE, Cassia GR, Geloneze B. Critical analysis on the use of the homeostasis model assessment (HOMA) indexes in the evaluation of the insulin resistance and the pancreatic beta cells functional capacity. Arq Bras Endocrinol Metabol. 2008;52:32-9.
  • 16. Bilginoglu A, Selcuk MFT, Nakkas H, Turan B. Pioglitazone provides beneficial effect in metabolic syndrome rats via affecting intracellular Na+ Dyshomeostasis. J Bioenerg Biomembr. 2018;50(6):437-45.
  • 17. Kaumi T, Hirano T, Odaka H, Ebara TAN, Hozumi T, Ishida Y. VLDL triglyceride kinetics in Wistar fatty rats, an animal model of NIDDM: effects of dietary fructose alone or in combination with pioglitazone. Diabetes. 1996;45:806-11.
  • 18. Antonucci T, Whitcomb R, McLain R, Lockwood D. Impaired glucose tolerance is normalized by treatment with thiazolidinediones troglitazone. Diabetes Care. 1997;20:188-93.
  • 19. Tonomura Y, Matsushima S, Kashiwagi E, Fujisawa K, Takagi S, Nshimura Y, et al. Biomarker panel of cardiac and skeletal muscle troponins, fatty acid binding protein 3 and myosin light chain 3 for the accurate diagnosis of cardiotoxicity and musculoskeletal toxicity in rats. Toxicology 2012;302(2-3):179-89.
  • 20. Nathwani RA, Pais S, Reynolds TB, Kaplowitz N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology. 2005;41(2):380-2.
  • 21. Aslan R, Kutlu R, Civi S, Tasyürek E. The correlation of the total antioxidant status (TAS) total oksidan status (TOS) and paraoxonase activity with smoking. Clinic Biochem 2014;47(6):393-7.
  • 22. Kartal H, Büyük B. Effects of alpha-lipoic acid on skeletal muscle ischemia-reperfusion injury in mice. J Surg Med. 2020;4(7):567-72.
  • 23. Memişoğulları R. Diyabette Serbest Radikallerin Rolü ve Antioksidanların Etkisi. Düzce Tıp Fakültesi Dergisi 2005;3:30-9.
  • 24. Hassan FE , Sakra HI, Mohie PM, Suliman HS, Mohamed AS, Attiaet MH, et al. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model. Annals Med. 2021;53(1): 1032–40.
  • 25. Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta. 2012;1822(5):729–36.
  • 26. Miyamoto S, Kawano H, Hokamaki J, Soejima H, Kojima S, Kudoh T, et al. Increased plasma levels of thioredoxin in patients with glucose intolerance. Intern Med. 2005;44(11):1127–32.

Yıl 2022, Cilt 3, Sayı 3, 241 - 246, 30.09.2022

Öz

Kaynakça

  • 1. Savage DB, Petersen KF, Shulman GI. Mechanisms of insulin resistance in humans and possible links with inflammation. Hypertension. 2005;45(5):828–33.
  • 2. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome: A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23:469–80.
  • 3. Scott CL. Diagnosis, prevention and intervention for the metabolic syndrome. Am J Cardiol. 2003;92:35–42.
  • 4. Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clinica Chimica Acta. 2006;368:1–19.
  • 5. Yeo YH, Lai YC. Redox regulation of metabolic syndrome: recent developments in skeletal muscle insulin resistance and non-alcoholic fatty liver disease (NAFLD). Curr Opin Physiol. 2019;9:79-86.
  • 6. Ohta Y, Kinugawa S, Matsushima S, Ono T, Sobirin MA, Inoue N, et al. Oxidative stress impairs insulin signal in skeletal muscle and causes insulin resistance in post infarct heart failure. Am J Physiol Heart Circ Physiol. 2011;300:H1637-44.
  • 7. Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med. 2016;98:18-28.
  • 8. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type 2 diabetes. Diabetes. 1996;45:1661–9.
  • 9. Plosker GL, Faulds D. Troglitazone: a review of its use in the management of type 2 diabetes mellitus. Drugs. 1999;57:409–38.
  • 10. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinediones receptor. Diabetes. 1998;47:507–14.
  • 11. Bajaj M, Baig R, Suraamornkul S, Hardies LJ, Coletta DK, Cline GW, et al. Effects of pioglitazone on intramyocellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:1916–23.
  • 12. Song GY, Gao Y, Wang C, Hardies LJ, Coletta DK, Cline GW, et al. Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats: a possible mechanism to prevent highfat-induced insulin resistance. Chin Med J (Engl). 2010;123:2384–91.
  • 13. Atalay M, Bilginoglu A, Kokkola T, Oksala N, Turan B. Treatments with sodium selenate or doxycycline offset diabetes-induced perturbations of thioredoxin-1 levels and antioxidant capacity. Mol Cell Biochem. 2011;351:125–31.
  • 14. Kakisaka Y, Nakashima T, Sumida Y, Yoh T, Nakamura H, Yodoi J, et al. Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm Met Res. 2002;34(3):160–4.
  • 15. Vasques AC, Rosado LE, Cassia GR, Geloneze B. Critical analysis on the use of the homeostasis model assessment (HOMA) indexes in the evaluation of the insulin resistance and the pancreatic beta cells functional capacity. Arq Bras Endocrinol Metabol. 2008;52:32-9.
  • 16. Bilginoglu A, Selcuk MFT, Nakkas H, Turan B. Pioglitazone provides beneficial effect in metabolic syndrome rats via affecting intracellular Na+ Dyshomeostasis. J Bioenerg Biomembr. 2018;50(6):437-45.
  • 17. Kaumi T, Hirano T, Odaka H, Ebara TAN, Hozumi T, Ishida Y. VLDL triglyceride kinetics in Wistar fatty rats, an animal model of NIDDM: effects of dietary fructose alone or in combination with pioglitazone. Diabetes. 1996;45:806-11.
  • 18. Antonucci T, Whitcomb R, McLain R, Lockwood D. Impaired glucose tolerance is normalized by treatment with thiazolidinediones troglitazone. Diabetes Care. 1997;20:188-93.
  • 19. Tonomura Y, Matsushima S, Kashiwagi E, Fujisawa K, Takagi S, Nshimura Y, et al. Biomarker panel of cardiac and skeletal muscle troponins, fatty acid binding protein 3 and myosin light chain 3 for the accurate diagnosis of cardiotoxicity and musculoskeletal toxicity in rats. Toxicology 2012;302(2-3):179-89.
  • 20. Nathwani RA, Pais S, Reynolds TB, Kaplowitz N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology. 2005;41(2):380-2.
  • 21. Aslan R, Kutlu R, Civi S, Tasyürek E. The correlation of the total antioxidant status (TAS) total oksidan status (TOS) and paraoxonase activity with smoking. Clinic Biochem 2014;47(6):393-7.
  • 22. Kartal H, Büyük B. Effects of alpha-lipoic acid on skeletal muscle ischemia-reperfusion injury in mice. J Surg Med. 2020;4(7):567-72.
  • 23. Memişoğulları R. Diyabette Serbest Radikallerin Rolü ve Antioksidanların Etkisi. Düzce Tıp Fakültesi Dergisi 2005;3:30-9.
  • 24. Hassan FE , Sakra HI, Mohie PM, Suliman HS, Mohamed AS, Attiaet MH, et al. Pioglitazone improves skeletal muscle functions in reserpine-induced fibromyalgia rat model. Annals Med. 2021;53(1): 1032–40.
  • 25. Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, et al. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta. 2012;1822(5):729–36.
  • 26. Miyamoto S, Kawano H, Hokamaki J, Soejima H, Kojima S, Kudoh T, et al. Increased plasma levels of thioredoxin in patients with glucose intolerance. Intern Med. 2005;44(11):1127–32.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyofizik
Bölüm ORIGINAL ARTICLE
Yazarlar

Ayça BİLGİNOĞLU> (Sorumlu Yazar)
Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Biophysics, Ankara, Turkey
0000-0002-1657-2607
Türkiye


Makbule Fulya TUTAR SELÇUK>
Namık Kemal University, Faculty of Medicine, Department of Internal Medicine, Tekirdağ, Turkey
0000-0002-8961-9883
Türkiye

Destekleyen Kurum TUBITAK; Ankara Yıldırım Beyazıt University Projects Office
Proje Numarası SBAG-115S827; 2864
Teşekkür I would like to thank Prof. Dr. Belma Turan for her departmental encouragement.
Yayımlanma Tarihi 30 Eylül 2022
Başvuru Tarihi 8 Mart 2022
Kabul Tarihi 19 Temmuz 2022
Yayınlandığı Sayı Yıl 2022, Cilt 3, Sayı 3

Kaynak Göster

APA Bilginoğlu, A. & Tutar Selçuk, M. F. (2022). Effect of pioglitazone on oxidative stress of skeletal muscle in the insulin resistance rat model induced by high sucrose diet . Archives of Current Medical Research , 3 (3) , 241-246 . Retrieved from https://dergipark.org.tr/tr/pub/acmr/issue/72847/1084437

Archives of Current Medical Research (ACMR) provides instant open access to all content, bearing in mind the fact that presenting research

free to the public supports a greater global exchange of knowledge.

http://www.acmronline.org/