Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Yüzey Geometrili Gofret Kalıp Sistemlerinin Termal ve Mekanik Yükler Altında Sonlu Elemanlar Yöntemi ile Analizi

Yıl 2025, Cilt: 3 Sayı: 2, 91 - 107, 31.12.2025

Öz

Bu çalışmada gıda endüstrisinde kullanılan gofret kalıp sistemlerinde üç farklı yüzey geometri konfigürasyonunun termal ve mekanik yükler altında sonlu elemanlar yöntemi kullanılarak bütünsel olarak incelemiştir. Analizler, SolidWorks Simulation platformu kullanılarak gerçekleştirilmiştir. Burada kullanılan kalıp tasarım konfigürasyonları: (1) boyuna kanal desenli kalıp, (2) lamalı boyuna kanal desenli kalıp ve (3) merkezi dairesel delikli boyuna kanal desenli kalıptır. Bu konfigürasyonlar, genel olarak maksimum von Mises gerilmesi ve maksimum toplam yer değiştirme kriterlerine göre değerlendirilmiştir. Bu kriterlere göre, lamalı boyuna kanal desenli kalıp özellikle en az maksimum yer değiştirmeye sahip olduğu ve kabul edilebilir emniyet faktörü değerinde yer aldığı için en iyi tasarım olarak değerlendirilmiştir. Sonuç olarak; takip edilen bu kalıp değerlendirme yaklaşımı, mevcut döküm kalıp teknolojisinin gıda sektöründeki problemlerin çözümüne yönelik geliştirilebilmesi, üretim verimliliğinin artırılabilmesi ve kalıp ömrünün uzatılabilmesine doğrudan katkı sağlayarak endüstriyel rekabet ve sürdürülebilirlik hedeflerini desteklemektedir.

Teşekkür

Yazar, çalışmayı destekleyen Tüfekçioğulları (Nefamak) Makine Gıda İmalat Sanayi ve Ticaret Limited Şirketi Ar-Ge Merkezi, Karaman/Türkiye yetkililerine teşekkür eder.

Kaynakça

  • Abdellah, M. Y., Fadhl, B. M., Abu El-Ainin, H. M., Hassan, M. K. & Mohamed, A. F. (2023). Experimental evaluation of mechanical and tribological properties of segregated Al-Mg-Si alloy filled with alumina and silicon carbide through different types of casting molds. Metals, 13(2), 316.
  • Armstrong, M., Mehrabi, H. & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 84, 1001-1029.
  • Castorani, V., Vita, A., Mandolini, M. & Germani, M. (2017). A CAD-based method for multi-objectives optimization of mechanical products. Computer-Aided Design and Applications, 14(5), 1–9.
  • Djabraian, S., Teichmann, F. & Müller, S. (2024). Thermo-mechanical optimization of die casting molds using topology optimization and numerical simulations. Materials, 17(9), 2114.
  • Dohda, K., Aravind, V., Yoshioka, H., Ehmann, K. & Funazuka, T. (2024). Micro-casting using molds with gradient cooling characteristics. Manufacturing Letters, 41, 1–5. https://doi.org/10.1016/j.mfglet.2024.05.006
  • Feng, S., Kamat, A. M. & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171, 121082.
  • Futas, P., Pástor, M. & Pribulova, A. (2024). Analysis of the possibilities of reducing the levels of residual Gerilmeses in casting produced from synthetic cast iron. Heliyon, 10(13), e33623.
  • Garbacz-Klempka, A., Kwak, Z., Zak, P., Szucki, M., Ścibior, D., Stolarczyk, T. & Nowak, K. (2017). Reconstruction of the casting technology in the Bronze Age on the basis of investigations and visualisation of casting moulds. Archives of Foundry Engineering, 17(3), 51-56.
  • Gašpár, Š., Coranič, T., Majerník, J., Husár, J., Knapčíková, L., Gojdan, D., & Paško, J. (2021). Influence of gating system parameters of die-cast molds on properties of Al-Si castings. Materials, 14(13), Article 3755.
  • Jolly, M. & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in Materials Science, 123, 100824.
  • Khan, F., Hossain, N., Mim, J. J., Rahman, S. M. M., Iqbal, M. J., Billah, M. & Chowdhury, M. A. (2025). Advances of composite materials in automobile applications – A review. Journal of Engineering Research, 13(2), 1001-1023.
  • Kleinhans, R., Pintore, M., Erhard, P., Renz, R. & Tesfu, J. (2025). Thermal properties of 3D-printed molds for light metal casting. International Journal of Metalcasting, 19, 1690–1699.
  • Ma, Y., Zhang, G., Cao, S., Huo, Z., Han, J., Ma, S. & Huang, Z. (2023). A review of advances in fabrication methods and assistive technologies of micro-structured surfaces. Processes, 11(5), 1337.
  • Matejka, M., Bolibruchová, D., Podprocká, R. & Oslanec, P. (2024). Effect of core temperature at HPDC on the internal quality of the casting. Archives of Foundry Engineering, 24(4), 151295.
  • Neves, N. S., Camargo, R. S. & Azevedo, M. S. (2022). Finite element computational development for thermo-mechanical analysis of plane steel structures exposed to fire. REM - International Engineering Journal, 75(1), 9–18.
  • Rahman, A., Isanaka, S. P. & Liou, F. (2025). A comprehensive study of cooling rate effects on diffusion, microstructural evolution, and characterization of aluminum alloys. Machines, 13(2), 160.
  • Ružbarský, J. & Gašpár, Š. (2023). Analysis of selected production parameters for the quality of pressure castings as a tool to increase competitiveness. Applied Sciences, 13(14), 8098.
  • Sertucha, J. & Lacaze, J. (2022). Casting defects in sand-mold cast irons—An illustrated review with emphasis on spheroidal graphite cast irons. Metals, 12(3), 504.
  • Shinde, M. S., & Ashtankar, K. M. (2017). Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering, 9(5), 1-14.
  • Wang, S., Xu, P., Zhou, Y., Duan, H., Chen, D. & Long, M. (2023). The effect of mold structure and cooling parameters on heat transfer during billet high-speed continuous casting. Materials, 16(9), 3361.
  • Zago, I. P., Vargas, R., Sciuti, V. F., Canto, R. B., & Angélico, R. A. (2024). DIC to evaluate a model composite system cracking due to CTE mismatch. Theoretical and Applied Fracture Mechanics, 131, 104330.
  • Zhang, J., Wang, S., Zhou, H., & Shu, C. (2022). Manufacturable casting parts design with topology optimization of structural assemblies. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(4).
  • Zhang, W. & Xu, J. (2022). Advanced lightweight materials for automobiles: A review. Materials & Design, 221, 110994.
  • Zhao, M. & Tang, Z. (2025). Comprehensive analysis of the injection mold process for complex fiberglass reinforced plastics with conformal cooling channels using multiple optimization method models. Processes, 13(9), 2803.
  • (URL–1, (2025). https://www.steel-grades.com/metals/85/218468/DIN-GG-26.html, 12 Eylül 2025)
  • (URL–2, (2025). https://www.makeitfrom.com, 12 Eylül 2025)

Analysis of Wafer Mold Systems with Different Surface Geometries Under Thermal and Mechanical Loads Using the Finite Element Method

Yıl 2025, Cilt: 3 Sayı: 2, 91 - 107, 31.12.2025

Öz

In this study, three different surface geometry configurations in wafer mold systems used in the food industry were comprehensively analyzed using the finite element method under thermal and mechanical loads. The analyses were performed using the SolidWorks Simulation platform. The mold design configurations used here are: (1) mold with longitudinal channel pattern, (2) mold with laminated longitudinal channel pattern, and (3) mold with central circular hole longitudinal channel pattern. These configurations were evaluated based on the maximum von Mises stress and maximum total displacement criteria. According to these criteria, the laminated longitudinal channel patterned mold was evaluated as the best design, particularly because it had the least maximum displacement and was within an acceptable safety factor value. In conclusion, this mold evaluation approach directly contributes to the development of existing casting mold technology for solving problems in the food industry, increasing production efficiency, and extending mold life, thereby supporting industrial competitiveness and sustainability goals.

Teşekkür

The author would like to thank the officials of the Tüfekçioğulları (Nefamak) Machinery Food Manufacturing Industry and Trade Limited Company R&D Center, Karaman, Türkiye, for their support of this study.

Kaynakça

  • Abdellah, M. Y., Fadhl, B. M., Abu El-Ainin, H. M., Hassan, M. K. & Mohamed, A. F. (2023). Experimental evaluation of mechanical and tribological properties of segregated Al-Mg-Si alloy filled with alumina and silicon carbide through different types of casting molds. Metals, 13(2), 316.
  • Armstrong, M., Mehrabi, H. & Naveed, N. (2022). An overview of modern metal additive manufacturing technology. Journal of Manufacturing Processes, 84, 1001-1029.
  • Castorani, V., Vita, A., Mandolini, M. & Germani, M. (2017). A CAD-based method for multi-objectives optimization of mechanical products. Computer-Aided Design and Applications, 14(5), 1–9.
  • Djabraian, S., Teichmann, F. & Müller, S. (2024). Thermo-mechanical optimization of die casting molds using topology optimization and numerical simulations. Materials, 17(9), 2114.
  • Dohda, K., Aravind, V., Yoshioka, H., Ehmann, K. & Funazuka, T. (2024). Micro-casting using molds with gradient cooling characteristics. Manufacturing Letters, 41, 1–5. https://doi.org/10.1016/j.mfglet.2024.05.006
  • Feng, S., Kamat, A. M. & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171, 121082.
  • Futas, P., Pástor, M. & Pribulova, A. (2024). Analysis of the possibilities of reducing the levels of residual Gerilmeses in casting produced from synthetic cast iron. Heliyon, 10(13), e33623.
  • Garbacz-Klempka, A., Kwak, Z., Zak, P., Szucki, M., Ścibior, D., Stolarczyk, T. & Nowak, K. (2017). Reconstruction of the casting technology in the Bronze Age on the basis of investigations and visualisation of casting moulds. Archives of Foundry Engineering, 17(3), 51-56.
  • Gašpár, Š., Coranič, T., Majerník, J., Husár, J., Knapčíková, L., Gojdan, D., & Paško, J. (2021). Influence of gating system parameters of die-cast molds on properties of Al-Si castings. Materials, 14(13), Article 3755.
  • Jolly, M. & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in Materials Science, 123, 100824.
  • Khan, F., Hossain, N., Mim, J. J., Rahman, S. M. M., Iqbal, M. J., Billah, M. & Chowdhury, M. A. (2025). Advances of composite materials in automobile applications – A review. Journal of Engineering Research, 13(2), 1001-1023.
  • Kleinhans, R., Pintore, M., Erhard, P., Renz, R. & Tesfu, J. (2025). Thermal properties of 3D-printed molds for light metal casting. International Journal of Metalcasting, 19, 1690–1699.
  • Ma, Y., Zhang, G., Cao, S., Huo, Z., Han, J., Ma, S. & Huang, Z. (2023). A review of advances in fabrication methods and assistive technologies of micro-structured surfaces. Processes, 11(5), 1337.
  • Matejka, M., Bolibruchová, D., Podprocká, R. & Oslanec, P. (2024). Effect of core temperature at HPDC on the internal quality of the casting. Archives of Foundry Engineering, 24(4), 151295.
  • Neves, N. S., Camargo, R. S. & Azevedo, M. S. (2022). Finite element computational development for thermo-mechanical analysis of plane steel structures exposed to fire. REM - International Engineering Journal, 75(1), 9–18.
  • Rahman, A., Isanaka, S. P. & Liou, F. (2025). A comprehensive study of cooling rate effects on diffusion, microstructural evolution, and characterization of aluminum alloys. Machines, 13(2), 160.
  • Ružbarský, J. & Gašpár, Š. (2023). Analysis of selected production parameters for the quality of pressure castings as a tool to increase competitiveness. Applied Sciences, 13(14), 8098.
  • Sertucha, J. & Lacaze, J. (2022). Casting defects in sand-mold cast irons—An illustrated review with emphasis on spheroidal graphite cast irons. Metals, 12(3), 504.
  • Shinde, M. S., & Ashtankar, K. M. (2017). Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes. Advances in Mechanical Engineering, 9(5), 1-14.
  • Wang, S., Xu, P., Zhou, Y., Duan, H., Chen, D. & Long, M. (2023). The effect of mold structure and cooling parameters on heat transfer during billet high-speed continuous casting. Materials, 16(9), 3361.
  • Zago, I. P., Vargas, R., Sciuti, V. F., Canto, R. B., & Angélico, R. A. (2024). DIC to evaluate a model composite system cracking due to CTE mismatch. Theoretical and Applied Fracture Mechanics, 131, 104330.
  • Zhang, J., Wang, S., Zhou, H., & Shu, C. (2022). Manufacturable casting parts design with topology optimization of structural assemblies. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 236(4).
  • Zhang, W. & Xu, J. (2022). Advanced lightweight materials for automobiles: A review. Materials & Design, 221, 110994.
  • Zhao, M. & Tang, Z. (2025). Comprehensive analysis of the injection mold process for complex fiberglass reinforced plastics with conformal cooling channels using multiple optimization method models. Processes, 13(9), 2803.
  • (URL–1, (2025). https://www.steel-grades.com/metals/85/218468/DIN-GG-26.html, 12 Eylül 2025)
  • (URL–2, (2025). https://www.makeitfrom.com, 12 Eylül 2025)
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Araştırma Makalesi
Yazarlar

Anıl Korkmaz 0009-0008-7175-8819

Gönderilme Tarihi 29 Eylül 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Korkmaz, A. (2025). Farklı Yüzey Geometrili Gofret Kalıp Sistemlerinin Termal ve Mekanik Yükler Altında Sonlu Elemanlar Yöntemi ile Analizi. Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 3(2), 91-107.

88x31.png

Artvin Çoruh Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.