Araştırma Makalesi
BibTex RIS Kaynak Göster

Çift Borulu Tip Eşanjörlerin Tasarım ve Performans Optimizasyonu CFD ve Ekonomik Analizlere Dayalı Sayısal Bir Çalışma

Yıl 2024, Cilt: 2 Sayı: 2, 100 - 110, 31.12.2024

Öz

Bu çalışmada çift boru tip ısı eşanjörü tasarımı için boyutsuz parametreler önerilmiş ve bu parametreler kullanılarak yanıt yüzeyi metodolojisi ile deneysel tasarım yapılmıştır. Elde edilen deney tasarım parametreleri kullanılarak sayısal modeller oluşturulmuş ve modeller Hesaplamalı akışkanlar dinamiği yazılımı kullanılarak çözülmüştür. Çeşitli tasarım parametreleri kullanılarak Çift Borulu Tip Isı Değiştiricilerin çıkış sıcaklığı ve basınç düşüşü değerlerini tahmin etmek için kuadratik modeller önerilmiştir. Her bir boyutsuz tasarım parametresinin çıkış sıcaklığı ve basınç düşüşü üzerindeki etkisi değerlendirilmiş ve minimum basınç kaybı ile maksimum ısı transferi için optimum bir tasarım sunulmuştur.

Kaynakça

  • Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress, 18, 100514.
  • Ashraf, G., Bilal, S., Ishaq, M., Saifullah, S. K., Alqahtani, A. S., & Malik, M. Y. (2024). Thermodynamic optimization in laminar and fully developed flow in double pipe heat exchanger with arrow-shaped extended surfaces: a novel design. Case Studies in Thermal Engineering, 54, 103947.
  • Cengel, Y. A., & Ghajar, A. J. (2015). Introduction and basic concepts. In Heat and Mass Transfer Fundamental and Applications (pp. 7-10). McGraw-Hill Education
  • Colaço, A. B., Mariani, V. C., Salem, M. R., & dos Santos Coelho, L. (2022). Maximizing the thermal performance index applying evolutionary multi-objective optimization approaches for double pipe heat exchanger. Applied Thermal Engineering, 211, 118504.
  • Dalkılıç, A. S., Mercan, H., Özçelik, G., & Wongwises, S. (2021). Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. Journal of Thermal Analysis and Calorimetry, 143, 859-878.
  • Dastmalchi, M., Sheikhzadeh, G. A., & Arefmanesh, A. (2017). Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Applied Thermal Engineering, 119, 1-9.
  • Du, Y., Hu, C., Yang, C., Wang, H., & Dong, W. (2022). Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine. Energy, 239, 122306.
  • El Maakoul, A., Feddi, K., Saadeddine, S., Ben Abdellah, A., & El Metoui, M. (2020). Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy Conversion and Management, 210, 112710. doi:10.1016/j.enconman.2020.112710
  • Esfandyari, M., Delouei, A. A., & Jalai, A. (2023). Optimization of ultrasonic-excited double-pipe heat exchanger with machine learning and PSO. International Communications in Heat andMass Transfer, 147, 106985.
  • Gandjalikhan Nassab, S. A., Ansari, A. B., & Javaran, E. J. (2023). Waste heat recovery of exhaust gas in a ribbed double-pipe heat exchanger. Heat Transfer Engineering, 44(15), 1372-1390.
  • Han, H. Z., Li, B. X., Wu, H., & Shao, W. (2015). Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. International Journal of Thermal Sciences, 90, 173-186.
  • Ishaq, M., Ali, A., Amjad, M., Syed, K. S., & Iqbal, Z. (2021). Diamond-shaped extended fins for heat transfer enhancement in a double-pipe heat exchanger: An innovative design. Applied Sciences, 11 (13), 5954.
  • Kola, P. V. K. V., Pisipaty, S. K., Mendu, S. S., & Ghosh, R. (2021). Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM. Chemical Engineering and Processing-Process Intensification, 163, 108362.
  • Kumar, S., & Dinesha, P. (2018). Optimization of thermal parameters in a double pipe heat exchanger with a twisted tape using response surface methodology. Soft Computing, 22, 6261-6270.
  • Majidi, D., Alighardashi, H., & Farhadi, F. (2018). Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Applied Thermal Engineering, 133, 276-282.
  • Mukherjee, S., Asthana, A., Howarth, M., Mcneill, R., & Frisby, B. (2019). Achieving operational excellence for industrial baking ovens. Energy Procedia, 161, 395-402.
  • Moloodpoor, M., Mortazavi, A., & Özbalta, N. (2021). Thermo-economic optimization of double- pipe heat exchanger using a compound swarm intelligence. Heat Transfer Research, 52(6).
  • Omidi, M., Farhadi, M., & Jafari, M. (2017). A comprehensive review on double pipe heat exchangers. Applied Thermal Engineering, 110, 1075-1090.
  • Poongavanam, G., & Kim, S. C. (2021). Effect of shot peening on augmenting the thermo-fluid characteristic of a concentric tube water-to-air counter flow heat exchanger. Case Studies in Thermal Engineering, 25, 100887.
  • Söylemez, M. S. (2004). Thermoeconomical optimization of double-pipe heat exchanger for waste heat recovery. Journal of thermophysics and heat transfer, 18(4), 559-563.
  • Sridharan, M. (2022). Performance optimization of counter flow double pipe heat exchanger using grey relational analysis. International Journal of Ambient Energy, 43(1), 5318-5326.
  • Sunu, P. W., Anakottapary, D. S., & Santika, W. G. (2016). Temperature approach optimization in the double pipe heat exchanger with groove. In MATEC Web of Conferences (Vol. 58, p. 04006). EDP Sciences
  • Taghilou, M., Ghadimi, B., & Seyyedvalilu, M. H. (2014). Optimization of double pipe fin-pin heat exchanger using entropy generation minimization. International Journal of Engineering, 27(9), 1431- 1438.
  • Venkatesh, B., Khan, M., Alabduallah, B., Kiran, A., Babu, J. C., Bhargavi, B., & Alhayan, F. (2023). Design Optimization of Counter-Flow Double-Pipe Heat Exchanger Using Hybrid Optimization Algorithm. Processes, 11(6), 1674.
  • Ya, C., Ghajar, A., & Ma, H. (2015). Heat and Mass Transfer Fundamentals & Applications. McGraw-Hill.
  • Zamani, J., & Keshavarz, A. (2023). Genetic algorithm optimization for double pipe heat exchanger PCM storage system during charging and discharging processes. International Communications in Heat and Mass Transfer, 146, 106904.
  • Zhang, Y., Hangi, M., Wang, X., & Rahbari, A. (2023). A comparative evaluation of double-pipe heat exchangers with enhanced mixing. Applied Thermal Engineering, 230, 120793.

Design and Performance Optimization of Double-Pipe Type Heat Exchangers Based on CFD and Economic Analyses-A Numerical Study

Yıl 2024, Cilt: 2 Sayı: 2, 100 - 110, 31.12.2024

Öz

In this study, Double-Pipe Type Heat Exchangers design and performance optimization were examined. Dimensionless parameters were suggested for the heat exchanger design and the experimental design was made using these parameters through response surface methodology. Numerical models were created using the obtained design of experiments parameters and the models were solved using computational fluid dynamics software. Quadratic models have been proposed to estimate the outlet temperature and pressure drop values of Double-Pipe Type Heat Exchangers using various design parameters. The effect of each dimensionless design parameter on outlet temperature and pressure drop was evaluated and an optimum design for maximum heat transfer with minimum pressure loss is presented.

Teşekkür

The authors would like to thank Tüfekçioğulları Machinery R&D Center and The Scientific and Technological Research Council of Türkiye under grant number 1501-3221347 for their support in the implementation part of the project.

Kaynakça

  • Arjmandi, H., Amiri, P., & Pour, M. S. (2020). Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress, 18, 100514.
  • Ashraf, G., Bilal, S., Ishaq, M., Saifullah, S. K., Alqahtani, A. S., & Malik, M. Y. (2024). Thermodynamic optimization in laminar and fully developed flow in double pipe heat exchanger with arrow-shaped extended surfaces: a novel design. Case Studies in Thermal Engineering, 54, 103947.
  • Cengel, Y. A., & Ghajar, A. J. (2015). Introduction and basic concepts. In Heat and Mass Transfer Fundamental and Applications (pp. 7-10). McGraw-Hill Education
  • Colaço, A. B., Mariani, V. C., Salem, M. R., & dos Santos Coelho, L. (2022). Maximizing the thermal performance index applying evolutionary multi-objective optimization approaches for double pipe heat exchanger. Applied Thermal Engineering, 211, 118504.
  • Dalkılıç, A. S., Mercan, H., Özçelik, G., & Wongwises, S. (2021). Optimization of the finned double-pipe heat exchanger using nanofluids as working fluids. Journal of Thermal Analysis and Calorimetry, 143, 859-878.
  • Dastmalchi, M., Sheikhzadeh, G. A., & Arefmanesh, A. (2017). Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Applied Thermal Engineering, 119, 1-9.
  • Du, Y., Hu, C., Yang, C., Wang, H., & Dong, W. (2022). Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine. Energy, 239, 122306.
  • El Maakoul, A., Feddi, K., Saadeddine, S., Ben Abdellah, A., & El Metoui, M. (2020). Performance enhancement of finned annulus using surface interruptions in double-pipe heat exchangers. Energy Conversion and Management, 210, 112710. doi:10.1016/j.enconman.2020.112710
  • Esfandyari, M., Delouei, A. A., & Jalai, A. (2023). Optimization of ultrasonic-excited double-pipe heat exchanger with machine learning and PSO. International Communications in Heat andMass Transfer, 147, 106985.
  • Gandjalikhan Nassab, S. A., Ansari, A. B., & Javaran, E. J. (2023). Waste heat recovery of exhaust gas in a ribbed double-pipe heat exchanger. Heat Transfer Engineering, 44(15), 1372-1390.
  • Han, H. Z., Li, B. X., Wu, H., & Shao, W. (2015). Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. International Journal of Thermal Sciences, 90, 173-186.
  • Ishaq, M., Ali, A., Amjad, M., Syed, K. S., & Iqbal, Z. (2021). Diamond-shaped extended fins for heat transfer enhancement in a double-pipe heat exchanger: An innovative design. Applied Sciences, 11 (13), 5954.
  • Kola, P. V. K. V., Pisipaty, S. K., Mendu, S. S., & Ghosh, R. (2021). Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM. Chemical Engineering and Processing-Process Intensification, 163, 108362.
  • Kumar, S., & Dinesha, P. (2018). Optimization of thermal parameters in a double pipe heat exchanger with a twisted tape using response surface methodology. Soft Computing, 22, 6261-6270.
  • Majidi, D., Alighardashi, H., & Farhadi, F. (2018). Experimental studies of heat transfer of air in a double-pipe helical heat exchanger. Applied Thermal Engineering, 133, 276-282.
  • Mukherjee, S., Asthana, A., Howarth, M., Mcneill, R., & Frisby, B. (2019). Achieving operational excellence for industrial baking ovens. Energy Procedia, 161, 395-402.
  • Moloodpoor, M., Mortazavi, A., & Özbalta, N. (2021). Thermo-economic optimization of double- pipe heat exchanger using a compound swarm intelligence. Heat Transfer Research, 52(6).
  • Omidi, M., Farhadi, M., & Jafari, M. (2017). A comprehensive review on double pipe heat exchangers. Applied Thermal Engineering, 110, 1075-1090.
  • Poongavanam, G., & Kim, S. C. (2021). Effect of shot peening on augmenting the thermo-fluid characteristic of a concentric tube water-to-air counter flow heat exchanger. Case Studies in Thermal Engineering, 25, 100887.
  • Söylemez, M. S. (2004). Thermoeconomical optimization of double-pipe heat exchanger for waste heat recovery. Journal of thermophysics and heat transfer, 18(4), 559-563.
  • Sridharan, M. (2022). Performance optimization of counter flow double pipe heat exchanger using grey relational analysis. International Journal of Ambient Energy, 43(1), 5318-5326.
  • Sunu, P. W., Anakottapary, D. S., & Santika, W. G. (2016). Temperature approach optimization in the double pipe heat exchanger with groove. In MATEC Web of Conferences (Vol. 58, p. 04006). EDP Sciences
  • Taghilou, M., Ghadimi, B., & Seyyedvalilu, M. H. (2014). Optimization of double pipe fin-pin heat exchanger using entropy generation minimization. International Journal of Engineering, 27(9), 1431- 1438.
  • Venkatesh, B., Khan, M., Alabduallah, B., Kiran, A., Babu, J. C., Bhargavi, B., & Alhayan, F. (2023). Design Optimization of Counter-Flow Double-Pipe Heat Exchanger Using Hybrid Optimization Algorithm. Processes, 11(6), 1674.
  • Ya, C., Ghajar, A., & Ma, H. (2015). Heat and Mass Transfer Fundamentals & Applications. McGraw-Hill.
  • Zamani, J., & Keshavarz, A. (2023). Genetic algorithm optimization for double pipe heat exchanger PCM storage system during charging and discharging processes. International Communications in Heat and Mass Transfer, 146, 106904.
  • Zhang, Y., Hangi, M., Wang, X., & Rahbari, A. (2023). A comparative evaluation of double-pipe heat exchangers with enhanced mixing. Applied Thermal Engineering, 230, 120793.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Sadık Tazegül 0000-0002-0405-2807

Mesut Bitkin 0000-0002-4573-4206

Ayşe Nur Öztekin 0000-0003-3567-8420

Ömer Sinan Şahin 0000-0002-0999-7332

Osman Babayiğit 0000-0003-3788-7787

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 1 Ekim 2024
Kabul Tarihi 30 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Tazegül, A. S., Bitkin, M., Öztekin, A. N., Sinan Şahin, Ö., vd. (2024). Design and Performance Optimization of Double-Pipe Type Heat Exchangers Based on CFD and Economic Analyses-A Numerical Study. Artvin Çoruh Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 2(2), 100-110.