Derleme
BibTex RIS Kaynak Göster

Plastik Kirliliğinin Önlenmesinde Biyodegradasyon Sürecinin Yeri

Yıl 2024, Cilt: 2 Sayı: 2, 130 - 149, 31.12.2024

Öz

Çevreye karışan plastikler doğal süreçlerle (biyolojik metabolizma, UV ve mekanik aşınma gibi) ayrışma ve bozunmaya uğramakta ve çapı 5 mm’den küçük mikroplastiklere (MP’lere) ve çapı maksimum 1000 nm’den küçük olan parçacıklara ayrılarak nanoplastiklere (NP’lere) dönüşmektedir. Mikroplastiklerin temel kaynakları arasında peeling sabunlar, yüz temizleyiciler, köpükler, sigara izmaritleri, giysi mikrofiberleri, iç mekan tozları, bebek bezi, diş macunu, kapaklar, çatal bıçak takımları gıda kapları ve deniz ürünleri gibi kaynaklar bulunmaktadır. Bu ürünlerin çoğu fosil yakıtlardan veya işlenmemiş hammaddelerden üretilmekte ve çöplüklere veya kontrolsüz atıklara karışarak çevre kirliliğini arttırmaktadır. Geleneksel plastik üretimi ve atık yönetimi süreçleri, sera gazı emisyonlarını artırarak iklim değişikliğine neden olmaktadır. Özellikle denizlerde veya okyanuslarda görülen plastik kirliliği üzerine yapılan çalışmalar ve plastiklerin enzimler tarafından biyolojik olarak parçalanmasıyla ilgili araştırmalar önem kazanmıştır. Bu derleme makalesi bakteriler, funguslar gibi mikroorganizmaların metabolik süreçleri ile plastik atıkların biyolojik bozunması üzerine mevcut araştırmalara güncel bir genel bakış sağlamayı amaçlamaktadır.

Kaynakça

  • Albertsson, A.C., Sares, C. & Karlsson, S. (1993). Increased biodegradation of LDPE with nonionic surfactant. Acta Polym. 44 (5), 243–246.
  • Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A. & Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of The Total Environment 771, 144719.
  • Ali, W., Buriro, R. S., Gandahi, J. A., Chen, Y., ul Aabdin, Z., Bhutto, S. & Zou, H. (2024). A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chemico-Biological Interactions 110976.
  • Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum,25(1), 53-64.
  • Amin, R., Sohaimi, E.S., Anuar, S.T. & Bachok, Z. (2020). Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Mar. Pollut. Bull. 150, 110616. Andrady, A.L., (2011). Microplastic in the marine environment. Mar. Pollut. Bull. 62, 1596–1605.
  • Asiandu, A. P., Wahyudi, A. & Sari, S. W. (2022). Aquatic plastics waste biodegradation using plastic degrading microbes. Journal of microbiology, biotechnology and food sciences, 11(5), e3724-e3724.
  • Barboza, L. G. A., Cózar, A., Gimenez, B. C., Barros, T. L., Kershaw, P. J. & Guilhermino, L. (2019). Macroplastics pollution in the marine environment. In World seas: An environmental evaluation (pp. 305-328).
  • Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society B: biological sciences,364(1526), 1985-1998.
  • Barrionuevo, J.M.R., Martín, E., Cardona, A.G., Malizia, A., Chalup, A., de Cristóbal, R.E. & Garzia, A.C.M., (2022). Consumption of low-density polyethylene, polypropylene, and polystyrene materials by larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera, Pyralidae), impacts on their ontogeny. Environ. Sci. Pollut. R. 29, 68132–68142.
  • Baskaran, S., Finelli, R., Agarwal, A. & Henkel, R. (2021). Reactive oxygen species in male reproduction: A boon or a bane?. Andrologia, 53(1), e13577,
  • Bejgarn, S., MacLeod, M., Bogdal, C. & Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere, 132, 114-119,
  • Besseling, E., Foekema, E.M., Van Franeker, J.A., Leopold, M.F., Kuhn, S., Bravo Rebolledo, E.L., Hesse, E., Mielke, L.J.I.J., Kamminga, P. & Koelmans, A.A. (2015). Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252,
  • Brown, A.E. 1945. The problem of fugal growth on synthetic resins. Mod. Plast. 23, 189.
  • Browne, M. A., M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T. & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 45, 9175–9179.
  • Bunty Sharma, Himanshi Rawat, Pooja & Ruchika Sharma. (2017). Bioremediation-A Progressive Approach toward Reducing Plastic Wastes. Int.J.Curr.Microbiol.App.Sci. 6(12): 1116-1131.
  • Cauwenberghe, L. & Janssen, C.R. (2014). Microplastic in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70.
  • Chaudhary, A. K., Chaitanya, K. & Vijayakumar, R. P. (2021). Synergistic effect of UV and chemical treatment on biological degradation of Polystyrene by Cephalosporium strain NCIM 1251. Archives of Microbiology, 203, 2183-2191.
  • Chaudhary, A.K. & Vijayakumar, R.P. (2020a). Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ. Dev. Sustain. 22(2), 1093-1104.
  • Chaudhary, A.K. & Vijayakumar, R.P., (2020b). Studies on biological degradation of polystyrene by pure fungal cultures. Environ. Dev. Sustain. 22(5), 4495-4508.
  • Chauhan, D., Agrawal, G., Deshmukh, S., Sinha Roy, S. & Priyadarshini, R., (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. Rsc Adv. 8(66), 37590-37599.
  • Chen, G., Feng, Q. & Wang, J. (2020a). Mini-review of microplastic in the atmosphere and their risks to humans. Sci. Total Environ. 703, 135504.
  • Chen, G.L., Fu, Z.L., Yang, H.R. & Wang, J. (2020b). An overview of analytical methods for detecting microplastic in the atmosphere. TrAC Trends Anal. Chem. 130, 115981.
  • Courtene-Jones, W., Quinn, B., Gary, S.F., Mogg, A.O.M. & Narayanaswamy, B.E., (2017). Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough. North Atlantic Ocean. Environ. Pollut. 231, 271–280.
  • Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. & Dudas, S.E. (2019). Human consumption of microplastic. Environ. Sci. Technol. 53, 7068–7074.
  • Desforges, J.P.W., Galbraith, M. & Ross, P.S., (2015). Ingestion of Microplastic by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69, 320–330.
  • Desforges, J.P.W., Galbraith, M., Dangerfield, N. & Ross, P.S., (2014). Widespread distribution of microplastic in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99.
  • Dhaka, V., Singh, S., Ramamurthy, P. C., Samuel, J., Swamy Sunil Kumar Naik, T., Khasnabis, S., & Singh, J. (2023). Biological degradation of polyethylene terephthalate by rhizobacteria. Environmental Science and Pollution Research,30(55), 116488-116497.
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V. & Tassin, B., (2017). A first overview of textile fibers, including microplastic, in indoor and outdoor environments. Environ. Pollut. 221, 453–458.
  • Dris, R., Gasperi, J., Saad, M., Mirande, C. & Tassin, B., (2016). Synthetic fibers in atmospheric fallout: a source of microplastic in the environment. Mar. Pollut. Bull. 104, 290–293.
  • Faccia, P.A., Pardini, F.M., Agnello, A.C., Amalvy, J.I. & Del Panno, M.T., (2021). Degradability of poly(ether-urethanes) and poly(ether-urethane)/acrylic hybrids by bacterial consortia of soil. Int. Biodeterior. Biodegrad. 160, 105205.
  • Fisner, M., Majer, A., Taniguchi, S., Bicego, M., Turra, A. & Gorman, D. (2017). Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets. Mar. Pollut. Bull. 122, 323–330.
  • Fuentes-Jaime, J., Vargas-Suárez, M., Cruz-Gómez, M.J. & Loza-Tavera, H., 2022. Concerted action of extracellular and cytoplasmic esterase and urethane-cleaving activities during Impranil biodegradation by Alicycliphilus denitrificans BQ1. Biodegradation 33(4), 389-406.
  • Funazukuri, T. (2015). Hydrothermal Depolymerization of Polyesters and Polycarbonate in the Presence of Ammonia and Amines. Recycling Materials Based on Environmentally Friendly Techniques.
  • Galvão, A., Aleixo, M., De Pablo, H., Lopes, C. & Raimundo, J. (2020). Microplastic in wastewater: microfiber emissions from common household laundry. Environmental Science and Pollution Research, 27, 26643-26649,
  • Gamage, P.L., Ren, Y.X., Slape, C.M., Ambike, I.M., Wallace, A.C., Fiedler, A.K., González, J.E., Biewer, M.C., Zimmern, P. & Stefan, M.C., (2019). Oxidative degradation of polypropylene mesh in E. coli Environment. Acs Appl. Bio. Mater. 2(9), 4027-4036.
  • Gao, R., Liu, R. & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 431, 128617
  • Gewert, B., Plassmann, M. M. & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental science: processes & impacts, 17(9), 1513-1521.
  • Ghosh, S., Qureshi, A. & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. Contaminants in agriculture and environment: health risks and remediation, 1, 184-199.
  • Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F., (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 52, 35-41.
  • Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., Feng, S. & Wiesner, M., (2021). Nanoplastics are neither microplastic nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507,
  • Golwala, H., Zhang, X., Iskander, S.M. & Smith, A.L. (2021). Solid waste: an overlooked source of mikroplastik to the environment. Sci. Total Environ. 769, 144581.
  • Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. & Wong, M.H. (2020). Source, migration and toxicology of mikroplastik in soil. Environ. Int. 137, 105263.
  • Habib, S., Iruthayam, A., Abd Shukor, M.Y., Alias, S.A., Smykla, J. & Yasid, N.A. (2020). Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria. Polymers 12(11), 2616.
  • Hardy, C., Kociok-Köhn, G., & Buchard, A. (2022). UV degradation of poly (lactic acid) materials through copolymerisation with a sugar-derived cyclic xanthate. Chemical Communications,58(36), 5463-5466.
  • Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E. & Wagner, M. (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology. Vol53, Issue 3, 1039-1047.
  • He, D.F., Luo, Y.M., Lu, S.B., Liu, M.T., Song, Y. & Lei, L.L. (2018). Microplastic in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 109, 163–172.
  • Hernandez, E., Nowack, B. & Mitrano, D. M. (2017). Polyester textiles as a source of microplastic from households: a mechanistic study to understand microfiber release during washing. Environmental science & technology, 51(12), 7036-7046.
  • Hou, C. C., & Zhu, J. Q. (2017). Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget, 8(65), 109799.
  • Hougaard, K. S. (2021). Next generation reproductive and developmental toxicology: Crosstalk into the future. Frontiers in Toxicology, 3, 652571.
  • Jelnes, J. E. (1988). Semen quality in workers producing reinforced plastic. Reproductive Toxicology, 2(3-4), 209-212. Jeon, J.-M., Park, S.-J., Choi, T.-R., Park, J.-H., Yang, Y.-H. & Yoon, J.-J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym. Degrad. Stabil. 191, 109662.
  • Jeong, C.B., Won, E.J., Kang, H.M., Lee, M.C., Hwang, D.S., Hwang, U.K., Zhou, B., Souissi, Lee, S.J. & Lee, J.S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-jnk and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857,
  • Jiang, S., Su, T., Zhao, J. & Wang, Z. (2021). Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) Larvae. Front. Bioeng. Biotech. 9.
  • Kannan, K. & Vimalkumar, K. A. (2021). Review of human exposure to mikroplastik and insights into microplastic as obesogens. Frontiers in Endocrinology, 12, 724989.
  • Kataoka, T., Nihei, Y., Kudou, K. & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastic in the river environments of Japan. Environ. Pollut. 244, 958–965.
  • Khan, S., Ali, S. A. & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300-2314.
  • Khandare, S.D., Agrawal, D., Mehru, N. & Chaudhary, D.R., (2022). Marine bacterial based enzymatic degradation of low-density polyethylene (LDPE) plastic. J. Environ. Chem. Eng. 10(3), 107437. doi: 10.1016/j.jece.2022.107437.
  • Khruengsai, S., Sripahco, T. & Pripdeevech, P. (2022). Biodegradation of polyester polyurethane by Embarria clematidis. Front. Microbiol. 13, 874842.
  • Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J.J. & Kim, D.H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 54(11), 6987-6996.
  • Kim, S. H., Cho, J. Y., Hwang, J. H., Kim, H. J., Oh, S. J., Kim, H. J. & Yang, Y. H. (2023). Revealing the key gene involved in bioplastic degradation from superior bioplastic degrader Bacillus sp. JY35. International Journal of Biological Macromolecules, 244, 125298.
  • Kord, B., Ayrilmis, N. & Ghalehno, M.D., (2021). Effect of fungal degradation on technological properties of carbon nanotubes reinforced polypropylene/rice straw composites. Polym. Polym. Compos. 29(5), 303-310.
  • Kumar, A.G., Hinduja, M., Sujitha, K., Rajan, N.N. & Dharani, G., (2021). Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total. Environ. 774, 145002
  • Kumar, V., Maitra, S. S., Singh, R., & Burnwal, D. K. (2020). Acclimatization of a newly isolated bacteria in monomer tere-phthalic acid (TPA) may enable it to attack the polymer poly-ethylene tere-phthalate (PET). Journal of Environmental Chemical Engineering, 8(4), 103977.
  • Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A. & Devipriya, S.P., (2019). Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. R. 26(18), 18509-18519.
  • Lei, L.L., Wu, S.Y., Lu, S.B., Liu, M.T., Song, Y., Fu, Z.H. & Shi, H.H. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 619, 1–8.
  • Li, J., Liu, H. & Paul Chen, J. (2018). Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 137, 362–374.
  • Liu, X., Zhang, Y., Sun, Q., Liu, Z., Zhao, Y., Fan, A. & Su, H. (2022). Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5. J. Environ. Manage. 301, 113848.
  • Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Huang, Y. & Zhao, Y. (2019). Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 215, 74–81.
  • Llorca, M., Schirinzi, G., Martinez, M., Barcelo, D. & Farre, M. (2018). Adsorption of perfluoroalkyl substances on microplastic under environmental conditions. Environ. Pollut. 235, 680–691.
  • Lou, Y., Ekaterina, P., Yang, S.-S., Lu, B., Liu, B., Ren, N., Corvini, P.F.-X. & Xing, D., (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 54(5), 2821-2831.
  • Lwanga, E. H., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 624, 753-757.
  • Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. & Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microb. Biotechnol. 12(3), 544-555.
  • Malafatti-Picca, L., de Barros Chaves, M.R., de Castro, A.M., Valoni, É., de Oliveira, V.M., Marsaioli, A.J., de Franceschi de Angelis, D. & Attili-Angelis, D., (2019). Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Braz. J. Microbiol. 20, 633–648.
  • Maleki Rad, M., Moghimi, H. & Azin, E., (2022). Biodegradation of thermo-oxidative ve low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastic by Achromobacter denitrificans Ebl13. Mar. Pollut. Bull. 181, 113830.
  • Mills, J., & Klausmeier, R. E. 1(974). The biodeterioration of synthetic polymers and plasticizers. Critical Reviews in Environmental Science and Technology, 4(1-4), 341-351.
  • Montazer, Z., Habibi-Najafi, M.B., Mohebbi, M. & Oromiehei, A. (2018). Microbial degradation of UV-ve low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J. Polym. Environ. 26, 3613–3625.
  • Moyses, D.N., Teixeira, D.A., Waldow, V.A., Freire, D.M.G. & Castro, A.M., (2021). Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using Penicillium species. 3 Biotech 11(10), 435.
  • Muhonja, C.N., Makonde, H., Magoma, G. & Imbuga, M., (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Plos One 13(7), e0198446.
  • Nag, M., Lahiri, D., Dutta, B., Jadav, G. & Ray, R.R., (2021). Biodegradation of used & polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ. Sci. Pollut. Res. 28, 41365–41379.
  • Nanthini Devi, K., Raju, P., Santhanam, P., Dinesh Kumar, S., Krishnaveni, N., Roopavathy, J. & Perumal, P., (2021). Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch. Microbiol. 203(10), 6253-6265.
  • Novotný, C., Fojtík, J., Mucha, M. & Malachová, K., (2022). Biodeterioration of compost-ve polyvinyl chloride films by microorganisms isolated from weathered plastics. Front. Bioeng. Biotech. 10, 832413.
  • Osman, M., Satti, S.M., Luqman, A., Hasan, F., Shah, Z. & Shah, A.A., (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J. Polym. Environ. 26(1), 301-310.
  • Peng, B.-Y., Chen, Z., Chen, J., Yu, H., Zhou, X., Criddle, C.S., Wu, W.-M. & Zhang, Y., (2020). Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 145, 106106.
  • Przemieniecki, S.W., Kosewska, A., Ciesielski, S. & Kosewska, O., (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environ. Pollut. 256, 113265.
  • Rahimi, A. & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 0046.
  • Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. & Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and mikroplastik and knowledge gaps: a scoping review. Sci. Total Environ. 757, 143872.
  • Rehse, S., Kloas, W. & Zarfl, C. (2018). Microplastic reduce short-term effects of environmental contaminants. part i: effects of bisphenol a on freshwater zooplankton are lower in presence of polyamide particles. Int. J. Environ. Res. Public Health 15, 280.
  • Rillig, M.C. & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science 368, 1430–1431.
  • Romera-Castillo, C., Pinto, M., Langer, T.M., Alvarez-Salgado, X.A. & Herndl, G.J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430.
  • Roy, R., Mukherjee, G., Das Gupta, A., Tribedi, P. & Sil, A. K. (2021). Isolation of a soil bacterium for remediation of polyurethane and low-density polyethylene: a promising tool towards sustainable cleanup of the environment. 3 Biotech, 11, 1-14.
  • Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 507487.
  • Ruslan, R., Iqbal, M., Pekey, A.Y., Dewi, A.P. & Djamaan, A., (2018). Isolation and characterization of polystyrene-degrading bacteria Bacillus sp. ITP 10.1.1 from soil sample of Jayawijaya mountains, Papua, Indonesia. Int. Res. J. Pharm. 9(10), 85-88.
  • Sa, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L. & Futter, M.N. (2018). Studies of the effects of microplastic on aquatic organisms: what do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039.
  • Samrot, A. V., & Noel Richard Prakash, L. X. (2023). Nanoparticles induced oxidative damage in reproductive system and role of antioxidants on the induced toxicity. Life, 13(3), 767.
  • Sangale, M.K., Shahnawar, M. & Ade, A.B., (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci. Rep. 9, 5390.
  • Sangeetha Devi Ramya, R., Kannan, K., Antony, A. R. & Kannan, V. R. (2019). Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine pollution bulletin, 138, 549-560.
  • Santillo, D., Miller, K. & Johnston, P. (2017). Microplastic as contaminants in commercially important seafood species. Integr. Environ. Assess Manag. 13, 516–521.
  • Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PloS one, 6(9), e24438.
  • Sarkhel, R., Sengupta, S., Das, P. & Bhowal, A., (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. J. Polym. Res. 27(1), 16.
  • Savoca, S., Capillo, G., Mancuso, M., Bottari, T., Crupi, R., Branca, C., Romano, V., Faggio, C., D’Angelo, G. & Spano, N. (2019). Mikroplastik occurrence in the Tyrrhenian waters and in the gastrointestinal tract of two congener species of seabreams. Environ. Toxicol. Pharmacol. 67, 35–41.
  • Shahsavaripour, M., Abbasi, S., Mirzaee, M. & Amiri, H. (2023). Human occupational exposure to mikroplastik: a cross-sectional study in a plastic products manufacturing plant. Sci. Total Environ. 882, 163576.
  • Silva, A.L., Prata, J.C., Walker, T.R., Duarte, A.C., Ouyang, W., Barcelo, D. & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem. Eng. J. 405, 126683.
  • Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S., (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stabil. 149, 52-68.
  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W. & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental science & technology, 51(8), 4368-4376.
  • Song, Y., Qiu, R., Hu, J., Li, X., Zhang, X., Chen, Y., Wu, W.-M. & He, D., (2020). Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Sci. Total Environ. 746, 141289.
  • Stubbins, A., Zhu, L., Zhao, S., Li, D., Bittar, T. B., Spencer, R. G., Law & K. L. L. (2020). Photochemical dissolution of buoyant mikroplastik to dissolved organic carbon: Rates and microbial impacts. In Ocean Sciences Meeting.
  • Sun, J., Qu, H., Ali, W., Chen, Y., Wang, T., Ma, Y. & Zou, H. (2023). Co-exposure to cadmium and mikroplastik promotes liver fibrosis through the hemichannels-ATP-P2X7 pathway. Chemosphere, 344, 140372.
  • Sun, J., Zheng, H., Xiang, H., Fan, J. & Jiang, H. (2022). The surface degradation and release of mikroplastik from plastic films studied by UV radiation and mechanical abrasion. Sci. Total Environ. 838, 156369.
  • Sun, W., Zhang, Y., Zhang, H., Wu, H., Liu, Q., Yang, F. & Zhang, W. (2024). Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics. Science of The Total Environment, 907, 167708.
  • Tarafdar, A., Lee, J. U., Jeong, J. E., Lee, H., Jung, Y., Oh, H. B., & Kwon, J. H. (2021). Biofilm development of Bacillus siamensis ATKU1 on pristine short chain low-density polyethylene: a case study on microbe-microplastics interaction. J. Hazard. Mater. 409, 124516.
  • Thakur, B., Singh, J., Singh, J., Angmo, D. & Vig, A. P. (2023). Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. Sci. Total Environ. 877, 162912.
  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. & Russell, A. E. (2004). Lost at sea: where is all the plastic. Science, 304(5672), 838-838.
  • Terepocki, A.K., Brush, A.T., Kleine, L.U., Shugart, G.W. & Hodum, P. (2017). Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150.
  • Wang, C., Wang, L., Ok, Y. S., Tsang, D. C. & Hou, D. (2022). Soil plastisphere: exploration methods, influencing factors, and ecological insights. J. Hazard. Mater, 430, 128503.
  • Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G. & Zhang, P. (2019). Microplastic as contaminants in the soil environment: a mini-review. Sci. Total Environ. 691, 848–857. Wang, P., Lombi, E., Zhao, F.J. & Kopittke, P.M. (2016). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 21, 699–712.
  • Wang, P., Zhao, J., Ruan, Y., Cai, X., Li, J., Zhang, L. & Huang, H., (2022a). Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6. J. Polym. Environ. 30(9), 3949-3958.
  • Wang, S., Shi, W., Huang, Z., Zhou, N., Xie, Y., Tang, Y., Hu, F., Liu, G. & Zheng, H., 2022b. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J. Hazard. Mater. 423, 127213.
  • Wang, Y.L., Lee, Y.H., Chiu, I.J., Lin, Y.F. & Chiu, H.W. (2020). Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int. J. Mol. Sci. 21, 1727.
  • Webb, H. K., Arnott, J., Crawford, R. J. & Ivanova, E. P. (2012). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1-18.
  • Wick, P. & Malek, A., Manser, P., Meili, D., Maeder-Althaus, X., Diener, L. & von Mandach, U. (2010). Barrier capacity of human placenta for nanosized materials. Environmental health perspectives, 118(3), 432-436.
  • Working, P. K. (1988). Male reproductive toxicology: comparison of the human to animal models. Environmental health perspectives, 77, 37-44.
  • Wright, S.L., Rowe, D., Thompson, R.C. & Galloway, T.S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031–R1033.
  • Yang, S. S., Wu, W. M., Pang, J. W., He, L., Ding, M. Q., Li, M. X. & Ding, J. (2023). Bibliometric analysis of publications on biodegradation of plastics: Explosively emerging research over 70 years. Journal of Cleaner Production, 139423.
  • Yang, S.-S., Ding, M.-Q., He, L., Zhang, C.-H., Li, Q.-X., Xing, D.-F., Cao, G.-L., Zhao, L., Ding, J., Ren, N.-Q. & Wu, W.-M., 2021b. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut microbe-dependent depolymerization. Sci. Total. Environ. 756, 144087.
  • Yin, K., Wang, Y., Zhao, H., Wang, D., Guo, M., Mu, M. & Xing, M. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total. Environ., 774, 145758. 2021.
  • Yousif, E. & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2, 398.
  • Yu, F., Yang, C., Zhu, Z., Bai, X., & Ma, J. (2019). Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total. Environ, 694, 133643.
  • Yu, X.B., Ladewig, S., Bao, S.W., Toline, C.A., Whitmire, S. & Chow, A.T. (2018). Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613, 298–305.
  • Zaini, N., Kasmuri, N., Mojiri, A., Kindaichi, T. & Nayono, S. E. (2024). Plastic pollution and degradation pathways: A review on the treatment Technologies. Heliyon.
  • Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q. & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. J. Hazard. Mater. 704, 135931.
  • Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K., Wu, C. & Lam, P. K. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554.

The Role of Biodegradation In The Preventing Plastic Pollution

Yıl 2024, Cilt: 2 Sayı: 2, 130 - 149, 31.12.2024

Öz

Plastics reach the environment and, naturally break down into microplastics (MPs) with a diameter of less than 5 mm and nanoplastics (NPs) with a maximum diameter of less than 1000 nm due to processesincluding biological metabolism, UV light, and mechanical abrasion. The primary sources of microplastics encompass exfoliating soaps, face cleansers, foams, cigarette butts, microfibers from clothing, indoor dust, nappies, toothpaste, caps, cutlery, food containers, and seafood. These products are derived from fossil fuels or unrefined natural resources and ultimately disposed of in landfills or unregulated waste sites, hence exacerbating environmental damage. Conventional plastic production and waste management methods contribute to climate change by amplifying the release of greenhouse gases. Research on plastic pollution, particularly in marine environments, and the enzymatic biodegradation of plastics have become increasingly significant. This review article seeks to present a comprehensive and recent overview of the ongoing research on the metabolic activities of microorganisms, specifically bacteria and fungi, and their ability to break down plastic waste through biodegradation.

Kaynakça

  • Albertsson, A.C., Sares, C. & Karlsson, S. (1993). Increased biodegradation of LDPE with nonionic surfactant. Acta Polym. 44 (5), 243–246.
  • Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A. & Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of The Total Environment 771, 144719.
  • Ali, W., Buriro, R. S., Gandahi, J. A., Chen, Y., ul Aabdin, Z., Bhutto, S. & Zou, H. (2024). A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chemico-Biological Interactions 110976.
  • Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum,25(1), 53-64.
  • Amin, R., Sohaimi, E.S., Anuar, S.T. & Bachok, Z. (2020). Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Mar. Pollut. Bull. 150, 110616. Andrady, A.L., (2011). Microplastic in the marine environment. Mar. Pollut. Bull. 62, 1596–1605.
  • Asiandu, A. P., Wahyudi, A. & Sari, S. W. (2022). Aquatic plastics waste biodegradation using plastic degrading microbes. Journal of microbiology, biotechnology and food sciences, 11(5), e3724-e3724.
  • Barboza, L. G. A., Cózar, A., Gimenez, B. C., Barros, T. L., Kershaw, P. J. & Guilhermino, L. (2019). Macroplastics pollution in the marine environment. In World seas: An environmental evaluation (pp. 305-328).
  • Barnes, D. K., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the royal society B: biological sciences,364(1526), 1985-1998.
  • Barrionuevo, J.M.R., Martín, E., Cardona, A.G., Malizia, A., Chalup, A., de Cristóbal, R.E. & Garzia, A.C.M., (2022). Consumption of low-density polyethylene, polypropylene, and polystyrene materials by larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera, Pyralidae), impacts on their ontogeny. Environ. Sci. Pollut. R. 29, 68132–68142.
  • Baskaran, S., Finelli, R., Agarwal, A. & Henkel, R. (2021). Reactive oxygen species in male reproduction: A boon or a bane?. Andrologia, 53(1), e13577,
  • Bejgarn, S., MacLeod, M., Bogdal, C. & Breitholtz, M. (2015). Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere, 132, 114-119,
  • Besseling, E., Foekema, E.M., Van Franeker, J.A., Leopold, M.F., Kuhn, S., Bravo Rebolledo, E.L., Hesse, E., Mielke, L.J.I.J., Kamminga, P. & Koelmans, A.A. (2015). Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248–252,
  • Brown, A.E. 1945. The problem of fugal growth on synthetic resins. Mod. Plast. 23, 189.
  • Browne, M. A., M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T. & Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 45, 9175–9179.
  • Bunty Sharma, Himanshi Rawat, Pooja & Ruchika Sharma. (2017). Bioremediation-A Progressive Approach toward Reducing Plastic Wastes. Int.J.Curr.Microbiol.App.Sci. 6(12): 1116-1131.
  • Cauwenberghe, L. & Janssen, C.R. (2014). Microplastic in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70.
  • Chaudhary, A. K., Chaitanya, K. & Vijayakumar, R. P. (2021). Synergistic effect of UV and chemical treatment on biological degradation of Polystyrene by Cephalosporium strain NCIM 1251. Archives of Microbiology, 203, 2183-2191.
  • Chaudhary, A.K. & Vijayakumar, R.P. (2020a). Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ. Dev. Sustain. 22(2), 1093-1104.
  • Chaudhary, A.K. & Vijayakumar, R.P., (2020b). Studies on biological degradation of polystyrene by pure fungal cultures. Environ. Dev. Sustain. 22(5), 4495-4508.
  • Chauhan, D., Agrawal, G., Deshmukh, S., Sinha Roy, S. & Priyadarshini, R., (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. Rsc Adv. 8(66), 37590-37599.
  • Chen, G., Feng, Q. & Wang, J. (2020a). Mini-review of microplastic in the atmosphere and their risks to humans. Sci. Total Environ. 703, 135504.
  • Chen, G.L., Fu, Z.L., Yang, H.R. & Wang, J. (2020b). An overview of analytical methods for detecting microplastic in the atmosphere. TrAC Trends Anal. Chem. 130, 115981.
  • Courtene-Jones, W., Quinn, B., Gary, S.F., Mogg, A.O.M. & Narayanaswamy, B.E., (2017). Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough. North Atlantic Ocean. Environ. Pollut. 231, 271–280.
  • Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. & Dudas, S.E. (2019). Human consumption of microplastic. Environ. Sci. Technol. 53, 7068–7074.
  • Desforges, J.P.W., Galbraith, M. & Ross, P.S., (2015). Ingestion of Microplastic by Zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69, 320–330.
  • Desforges, J.P.W., Galbraith, M., Dangerfield, N. & Ross, P.S., (2014). Widespread distribution of microplastic in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99.
  • Dhaka, V., Singh, S., Ramamurthy, P. C., Samuel, J., Swamy Sunil Kumar Naik, T., Khasnabis, S., & Singh, J. (2023). Biological degradation of polyethylene terephthalate by rhizobacteria. Environmental Science and Pollution Research,30(55), 116488-116497.
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V. & Tassin, B., (2017). A first overview of textile fibers, including microplastic, in indoor and outdoor environments. Environ. Pollut. 221, 453–458.
  • Dris, R., Gasperi, J., Saad, M., Mirande, C. & Tassin, B., (2016). Synthetic fibers in atmospheric fallout: a source of microplastic in the environment. Mar. Pollut. Bull. 104, 290–293.
  • Faccia, P.A., Pardini, F.M., Agnello, A.C., Amalvy, J.I. & Del Panno, M.T., (2021). Degradability of poly(ether-urethanes) and poly(ether-urethane)/acrylic hybrids by bacterial consortia of soil. Int. Biodeterior. Biodegrad. 160, 105205.
  • Fisner, M., Majer, A., Taniguchi, S., Bicego, M., Turra, A. & Gorman, D. (2017). Colour spectrum and resin-type determine the concentration and composition of Polycyclic Aromatic Hydrocarbons (PAHs) in plastic pellets. Mar. Pollut. Bull. 122, 323–330.
  • Fuentes-Jaime, J., Vargas-Suárez, M., Cruz-Gómez, M.J. & Loza-Tavera, H., 2022. Concerted action of extracellular and cytoplasmic esterase and urethane-cleaving activities during Impranil biodegradation by Alicycliphilus denitrificans BQ1. Biodegradation 33(4), 389-406.
  • Funazukuri, T. (2015). Hydrothermal Depolymerization of Polyesters and Polycarbonate in the Presence of Ammonia and Amines. Recycling Materials Based on Environmentally Friendly Techniques.
  • Galvão, A., Aleixo, M., De Pablo, H., Lopes, C. & Raimundo, J. (2020). Microplastic in wastewater: microfiber emissions from common household laundry. Environmental Science and Pollution Research, 27, 26643-26649,
  • Gamage, P.L., Ren, Y.X., Slape, C.M., Ambike, I.M., Wallace, A.C., Fiedler, A.K., González, J.E., Biewer, M.C., Zimmern, P. & Stefan, M.C., (2019). Oxidative degradation of polypropylene mesh in E. coli Environment. Acs Appl. Bio. Mater. 2(9), 4027-4036.
  • Gao, R., Liu, R. & Sun, C. (2022). A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 431, 128617
  • Gewert, B., Plassmann, M. M. & MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental science: processes & impacts, 17(9), 1513-1521.
  • Ghosh, S., Qureshi, A. & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. Contaminants in agriculture and environment: health risks and remediation, 1, 184-199.
  • Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F., (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 52, 35-41.
  • Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., Feng, S. & Wiesner, M., (2021). Nanoplastics are neither microplastic nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507,
  • Golwala, H., Zhang, X., Iskander, S.M. & Smith, A.L. (2021). Solid waste: an overlooked source of mikroplastik to the environment. Sci. Total Environ. 769, 144581.
  • Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. & Wong, M.H. (2020). Source, migration and toxicology of mikroplastik in soil. Environ. Int. 137, 105263.
  • Habib, S., Iruthayam, A., Abd Shukor, M.Y., Alias, S.A., Smykla, J. & Yasid, N.A. (2020). Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria. Polymers 12(11), 2616.
  • Hardy, C., Kociok-Köhn, G., & Buchard, A. (2022). UV degradation of poly (lactic acid) materials through copolymerisation with a sugar-derived cyclic xanthate. Chemical Communications,58(36), 5463-5466.
  • Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E. & Wagner, M. (2019) Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology. Vol53, Issue 3, 1039-1047.
  • He, D.F., Luo, Y.M., Lu, S.B., Liu, M.T., Song, Y. & Lei, L.L. (2018). Microplastic in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 109, 163–172.
  • Hernandez, E., Nowack, B. & Mitrano, D. M. (2017). Polyester textiles as a source of microplastic from households: a mechanistic study to understand microfiber release during washing. Environmental science & technology, 51(12), 7036-7046.
  • Hou, C. C., & Zhu, J. Q. (2017). Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget, 8(65), 109799.
  • Hougaard, K. S. (2021). Next generation reproductive and developmental toxicology: Crosstalk into the future. Frontiers in Toxicology, 3, 652571.
  • Jelnes, J. E. (1988). Semen quality in workers producing reinforced plastic. Reproductive Toxicology, 2(3-4), 209-212. Jeon, J.-M., Park, S.-J., Choi, T.-R., Park, J.-H., Yang, Y.-H. & Yoon, J.-J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym. Degrad. Stabil. 191, 109662.
  • Jeong, C.B., Won, E.J., Kang, H.M., Lee, M.C., Hwang, D.S., Hwang, U.K., Zhou, B., Souissi, Lee, S.J. & Lee, J.S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-jnk and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857,
  • Jiang, S., Su, T., Zhao, J. & Wang, Z. (2021). Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) Larvae. Front. Bioeng. Biotech. 9.
  • Kannan, K. & Vimalkumar, K. A. (2021). Review of human exposure to mikroplastik and insights into microplastic as obesogens. Frontiers in Endocrinology, 12, 724989.
  • Kataoka, T., Nihei, Y., Kudou, K. & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastic in the river environments of Japan. Environ. Pollut. 244, 958–965.
  • Khan, S., Ali, S. A. & Ali, A. S. (2023). Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum isolated from soils of plastic waste dump yard, Bhopal, India. Environmental Technology, 44(15), 2300-2314.
  • Khandare, S.D., Agrawal, D., Mehru, N. & Chaudhary, D.R., (2022). Marine bacterial based enzymatic degradation of low-density polyethylene (LDPE) plastic. J. Environ. Chem. Eng. 10(3), 107437. doi: 10.1016/j.jece.2022.107437.
  • Khruengsai, S., Sripahco, T. & Pripdeevech, P. (2022). Biodegradation of polyester polyurethane by Embarria clematidis. Front. Microbiol. 13, 874842.
  • Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J.J. & Kim, D.H. (2020). Biodegradation of Polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ. Sci. Technol. 54(11), 6987-6996.
  • Kim, S. H., Cho, J. Y., Hwang, J. H., Kim, H. J., Oh, S. J., Kim, H. J. & Yang, Y. H. (2023). Revealing the key gene involved in bioplastic degradation from superior bioplastic degrader Bacillus sp. JY35. International Journal of Biological Macromolecules, 244, 125298.
  • Kord, B., Ayrilmis, N. & Ghalehno, M.D., (2021). Effect of fungal degradation on technological properties of carbon nanotubes reinforced polypropylene/rice straw composites. Polym. Polym. Compos. 29(5), 303-310.
  • Kumar, A.G., Hinduja, M., Sujitha, K., Rajan, N.N. & Dharani, G., (2021). Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total. Environ. 774, 145002
  • Kumar, V., Maitra, S. S., Singh, R., & Burnwal, D. K. (2020). Acclimatization of a newly isolated bacteria in monomer tere-phthalic acid (TPA) may enable it to attack the polymer poly-ethylene tere-phthalate (PET). Journal of Environmental Chemical Engineering, 8(4), 103977.
  • Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A. & Devipriya, S.P., (2019). Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ. Sci. Pollut. R. 26(18), 18509-18519.
  • Lei, L.L., Wu, S.Y., Lu, S.B., Liu, M.T., Song, Y., Fu, Z.H. & Shi, H.H. (2018). Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 619, 1–8.
  • Li, J., Liu, H. & Paul Chen, J. (2018). Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 137, 362–374.
  • Liu, X., Zhang, Y., Sun, Q., Liu, Z., Zhao, Y., Fan, A. & Su, H. (2022). Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5. J. Environ. Manage. 301, 113848.
  • Liu, Z., Yu, P., Cai, M., Wu, D., Zhang, M., Huang, Y. & Zhao, Y. (2019). Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 215, 74–81.
  • Llorca, M., Schirinzi, G., Martinez, M., Barcelo, D. & Farre, M. (2018). Adsorption of perfluoroalkyl substances on microplastic under environmental conditions. Environ. Pollut. 235, 680–691.
  • Lou, Y., Ekaterina, P., Yang, S.-S., Lu, B., Liu, B., Ren, N., Corvini, P.F.-X. & Xing, D., (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ. Sci. Technol. 54(5), 2821-2831.
  • Lwanga, E. H., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 624, 753-757.
  • Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. & Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microb. Biotechnol. 12(3), 544-555.
  • Malafatti-Picca, L., de Barros Chaves, M.R., de Castro, A.M., Valoni, É., de Oliveira, V.M., Marsaioli, A.J., de Franceschi de Angelis, D. & Attili-Angelis, D., (2019). Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Braz. J. Microbiol. 20, 633–648.
  • Maleki Rad, M., Moghimi, H. & Azin, E., (2022). Biodegradation of thermo-oxidative ve low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastic by Achromobacter denitrificans Ebl13. Mar. Pollut. Bull. 181, 113830.
  • Mills, J., & Klausmeier, R. E. 1(974). The biodeterioration of synthetic polymers and plasticizers. Critical Reviews in Environmental Science and Technology, 4(1-4), 341-351.
  • Montazer, Z., Habibi-Najafi, M.B., Mohebbi, M. & Oromiehei, A. (2018). Microbial degradation of UV-ve low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J. Polym. Environ. 26, 3613–3625.
  • Moyses, D.N., Teixeira, D.A., Waldow, V.A., Freire, D.M.G. & Castro, A.M., (2021). Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using Penicillium species. 3 Biotech 11(10), 435.
  • Muhonja, C.N., Makonde, H., Magoma, G. & Imbuga, M., (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. Plos One 13(7), e0198446.
  • Nag, M., Lahiri, D., Dutta, B., Jadav, G. & Ray, R.R., (2021). Biodegradation of used & polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ. Sci. Pollut. Res. 28, 41365–41379.
  • Nanthini Devi, K., Raju, P., Santhanam, P., Dinesh Kumar, S., Krishnaveni, N., Roopavathy, J. & Perumal, P., (2021). Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch. Microbiol. 203(10), 6253-6265.
  • Novotný, C., Fojtík, J., Mucha, M. & Malachová, K., (2022). Biodeterioration of compost-ve polyvinyl chloride films by microorganisms isolated from weathered plastics. Front. Bioeng. Biotech. 10, 832413.
  • Osman, M., Satti, S.M., Luqman, A., Hasan, F., Shah, Z. & Shah, A.A., (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J. Polym. Environ. 26(1), 301-310.
  • Peng, B.-Y., Chen, Z., Chen, J., Yu, H., Zhou, X., Criddle, C.S., Wu, W.-M. & Zhang, Y., (2020). Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 145, 106106.
  • Przemieniecki, S.W., Kosewska, A., Ciesielski, S. & Kosewska, O., (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environ. Pollut. 256, 113265.
  • Rahimi, A. & García, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 0046.
  • Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. & Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and mikroplastik and knowledge gaps: a scoping review. Sci. Total Environ. 757, 143872.
  • Rehse, S., Kloas, W. & Zarfl, C. (2018). Microplastic reduce short-term effects of environmental contaminants. part i: effects of bisphenol a on freshwater zooplankton are lower in presence of polyamide particles. Int. J. Environ. Res. Public Health 15, 280.
  • Rillig, M.C. & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science 368, 1430–1431.
  • Romera-Castillo, C., Pinto, M., Langer, T.M., Alvarez-Salgado, X.A. & Herndl, G.J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430.
  • Roy, R., Mukherjee, G., Das Gupta, A., Tribedi, P. & Sil, A. K. (2021). Isolation of a soil bacterium for remediation of polyurethane and low-density polyethylene: a promising tool towards sustainable cleanup of the environment. 3 Biotech, 11, 1-14.
  • Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 507487.
  • Ruslan, R., Iqbal, M., Pekey, A.Y., Dewi, A.P. & Djamaan, A., (2018). Isolation and characterization of polystyrene-degrading bacteria Bacillus sp. ITP 10.1.1 from soil sample of Jayawijaya mountains, Papua, Indonesia. Int. Res. J. Pharm. 9(10), 85-88.
  • Sa, L.C., Oliveira, M., Ribeiro, F., Rocha, T.L. & Futter, M.N. (2018). Studies of the effects of microplastic on aquatic organisms: what do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039.
  • Samrot, A. V., & Noel Richard Prakash, L. X. (2023). Nanoparticles induced oxidative damage in reproductive system and role of antioxidants on the induced toxicity. Life, 13(3), 767.
  • Sangale, M.K., Shahnawar, M. & Ade, A.B., (2019). Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci. Rep. 9, 5390.
  • Sangeetha Devi Ramya, R., Kannan, K., Antony, A. R. & Kannan, V. R. (2019). Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine pollution bulletin, 138, 549-560.
  • Santillo, D., Miller, K. & Johnston, P. (2017). Microplastic as contaminants in commercially important seafood species. Integr. Environ. Assess Manag. 13, 516–521.
  • Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PloS one, 6(9), e24438.
  • Sarkhel, R., Sengupta, S., Das, P. & Bhowal, A., (2020). Comparative biodegradation study of polymer from plastic bottle waste using novel isolated bacteria and fungi from marine source. J. Polym. Res. 27(1), 16.
  • Savoca, S., Capillo, G., Mancuso, M., Bottari, T., Crupi, R., Branca, C., Romano, V., Faggio, C., D’Angelo, G. & Spano, N. (2019). Mikroplastik occurrence in the Tyrrhenian waters and in the gastrointestinal tract of two congener species of seabreams. Environ. Toxicol. Pharmacol. 67, 35–41.
  • Shahsavaripour, M., Abbasi, S., Mirzaee, M. & Amiri, H. (2023). Human occupational exposure to mikroplastik: a cross-sectional study in a plastic products manufacturing plant. Sci. Total Environ. 882, 163576.
  • Silva, A.L., Prata, J.C., Walker, T.R., Duarte, A.C., Ouyang, W., Barcelo, D. & Rocha-Santos, T. (2021). Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem. Eng. J. 405, 126683.
  • Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S., (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stabil. 149, 52-68.
  • Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W. & Shim, W. J. (2017). Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environmental science & technology, 51(8), 4368-4376.
  • Song, Y., Qiu, R., Hu, J., Li, X., Zhang, X., Chen, Y., Wu, W.-M. & He, D., (2020). Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Sci. Total Environ. 746, 141289.
  • Stubbins, A., Zhu, L., Zhao, S., Li, D., Bittar, T. B., Spencer, R. G., Law & K. L. L. (2020). Photochemical dissolution of buoyant mikroplastik to dissolved organic carbon: Rates and microbial impacts. In Ocean Sciences Meeting.
  • Sun, J., Qu, H., Ali, W., Chen, Y., Wang, T., Ma, Y. & Zou, H. (2023). Co-exposure to cadmium and mikroplastik promotes liver fibrosis through the hemichannels-ATP-P2X7 pathway. Chemosphere, 344, 140372.
  • Sun, J., Zheng, H., Xiang, H., Fan, J. & Jiang, H. (2022). The surface degradation and release of mikroplastik from plastic films studied by UV radiation and mechanical abrasion. Sci. Total Environ. 838, 156369.
  • Sun, W., Zhang, Y., Zhang, H., Wu, H., Liu, Q., Yang, F. & Zhang, W. (2024). Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics. Science of The Total Environment, 907, 167708.
  • Tarafdar, A., Lee, J. U., Jeong, J. E., Lee, H., Jung, Y., Oh, H. B., & Kwon, J. H. (2021). Biofilm development of Bacillus siamensis ATKU1 on pristine short chain low-density polyethylene: a case study on microbe-microplastics interaction. J. Hazard. Mater. 409, 124516.
  • Thakur, B., Singh, J., Singh, J., Angmo, D. & Vig, A. P. (2023). Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. Sci. Total Environ. 877, 162912.
  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. & Russell, A. E. (2004). Lost at sea: where is all the plastic. Science, 304(5672), 838-838.
  • Terepocki, A.K., Brush, A.T., Kleine, L.U., Shugart, G.W. & Hodum, P. (2017). Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 116, 143–150.
  • Wang, C., Wang, L., Ok, Y. S., Tsang, D. C. & Hou, D. (2022). Soil plastisphere: exploration methods, influencing factors, and ecological insights. J. Hazard. Mater, 430, 128503.
  • Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G. & Zhang, P. (2019). Microplastic as contaminants in the soil environment: a mini-review. Sci. Total Environ. 691, 848–857. Wang, P., Lombi, E., Zhao, F.J. & Kopittke, P.M. (2016). Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. 21, 699–712.
  • Wang, P., Zhao, J., Ruan, Y., Cai, X., Li, J., Zhang, L. & Huang, H., (2022a). Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6. J. Polym. Environ. 30(9), 3949-3958.
  • Wang, S., Shi, W., Huang, Z., Zhou, N., Xie, Y., Tang, Y., Hu, F., Liu, G. & Zheng, H., 2022b. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J. Hazard. Mater. 423, 127213.
  • Wang, Y.L., Lee, Y.H., Chiu, I.J., Lin, Y.F. & Chiu, H.W. (2020). Potent impact of plastic nanomaterials and micromaterials on the food chain and human health. Int. J. Mol. Sci. 21, 1727.
  • Webb, H. K., Arnott, J., Crawford, R. J. & Ivanova, E. P. (2012). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1-18.
  • Wick, P. & Malek, A., Manser, P., Meili, D., Maeder-Althaus, X., Diener, L. & von Mandach, U. (2010). Barrier capacity of human placenta for nanosized materials. Environmental health perspectives, 118(3), 432-436.
  • Working, P. K. (1988). Male reproductive toxicology: comparison of the human to animal models. Environmental health perspectives, 77, 37-44.
  • Wright, S.L., Rowe, D., Thompson, R.C. & Galloway, T.S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 23, R1031–R1033.
  • Yang, S. S., Wu, W. M., Pang, J. W., He, L., Ding, M. Q., Li, M. X. & Ding, J. (2023). Bibliometric analysis of publications on biodegradation of plastics: Explosively emerging research over 70 years. Journal of Cleaner Production, 139423.
  • Yang, S.-S., Ding, M.-Q., He, L., Zhang, C.-H., Li, Q.-X., Xing, D.-F., Cao, G.-L., Zhao, L., Ding, J., Ren, N.-Q. & Wu, W.-M., 2021b. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut microbe-dependent depolymerization. Sci. Total. Environ. 756, 144087.
  • Yin, K., Wang, Y., Zhao, H., Wang, D., Guo, M., Mu, M. & Xing, M. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total. Environ., 774, 145758. 2021.
  • Yousif, E. & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2, 398.
  • Yu, F., Yang, C., Zhu, Z., Bai, X., & Ma, J. (2019). Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total. Environ, 694, 133643.
  • Yu, X.B., Ladewig, S., Bao, S.W., Toline, C.A., Whitmire, S. & Chow, A.T. (2018). Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613, 298–305.
  • Zaini, N., Kasmuri, N., Mojiri, A., Kindaichi, T. & Nayono, S. E. (2024). Plastic pollution and degradation pathways: A review on the treatment Technologies. Heliyon.
  • Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q. & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. J. Hazard. Mater. 704, 135931.
  • Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K., Wu, C. & Lam, P. K. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554.
Toplam 130 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyoremediasyon
Bölüm Derlemeler
Yazarlar

İlknur Erkılınç 0009-0008-6356-6761

Tuba Artan Onat 0000-0003-0300-9855

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 12 Temmuz 2024
Kabul Tarihi 19 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Erkılınç, İ., & Artan Onat, T. (2024). Plastik Kirliliğinin Önlenmesinde Biyodegradasyon Sürecinin Yeri. Artvin Çoruh Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 2(2), 130-149.