Derleme
BibTex RIS Kaynak Göster

Effects of Artificial Aging Processes on the Physical and Mechanical Properties of Zirconia

Yıl 2024, Cilt: 10 Sayı: 3, 295 - 301, 30.12.2024

Öz

Yttrium-stabilized tetragonal zirconia polycrystal is one of the materials used successfully in dentistry in the production of implant abutments, prosthetic infrastructures and monolithic crowns due to its superior mechanical properties. Zirconia is resistant to high chewing forces when stabilized in the tetragonal phase. However, when it is exposed to a humid environment, zirconia may undergo structural degradation, which is characterized by grain growth, increase in surface roughness and propagation of microcracks, resulting in a decrease in the mechanical properties of the material. This degradation can become extremely critical for the clinical performance of zirconia used in biomedical applications. The aim of this review was to evaluate the effects of artificial aging processes on the physical and mechanical properties of dental zirconia. For this purpose, the literature search was made in PubMed, Scopus and Google Scholar databases using the keywords (artificial aging) AND (dental zirconia) OR (monolithic zirconia) OR (zirconium dioxide). After screening 249 results, 37 studies were included in this review. As a result, it was observed that in-vitro or in-vivo artificial aging processes were applied to zirconia by using different methods. However, current clinical studies show that the success of zirconia in prosthetic applications is high.

Kaynakça

  • Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: A comprehensive review. Molecules. 2022;27(5):1699.
  • Alfawaz Y. Zirconia crown as single unit tooth restoration: a literature review. J Contemp Dent Pract. 2016;17(5):418-422.
  • Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119(2):308 e301-308 e307.
  • Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013;29(12):1201-1208.
  • Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society. 2009;29(7):1245-1255.
  • Durkan R, Deste G, Şimşek H. Monolitik zirkonya seramik sistemlerinin üretim tipleri ile aşınma, optik ve estetik özellikleri. Ata Diş Hek Fak Derg. 2018;28(2):263- 270.
  • Arcila LVC, Ramos NC, Campos TMB, Dapieve KS, Valandro LF, de Melo RM, Bottino MA. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses. J Adv Prosthodont. 2021 Dec;13(6):385-395.
  • Kulyk V, Duriagina Z, Kostryzhev A, Vasyliv B, Vavrukh V, Marenych O. The effect of yttria content on microstructure, strength, and fracture behavior of yttriastabilized zirconia. Materials (Basel). 2022;15(15):5212.
  • Manziuc MM, Gasparik C, Negucioiu M, et al. Optical properties of translucent zirconia: A review of the literature. Eurobiotech J. 2019;3(1):45-51.
  • Kim HK. Optical and mechanical properties of highly translucent dental zirconia. Materials (Basel). 2020;13(15):3395.
  • Pereira GKR, Venturini AB, Silvestri T, et al. Lowtemperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed. 2015;55:151-163.
  • Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed. 2015;45:183-192.
  • Flinn BD, Raigrodski AJ, Singh A, Mancl LA. Effect of hydrothermal degradation on three types of zirconias for dental application. J Prosthet Dent. 2014;112(6):1377- 1384.
  • Xie H, Shen S, Qian M, Zhang F, Chen C, Tay FR. Effects of acid treatment on dental zirconia: An in vitro study. PLoS One. 2015;10(8):e0136263.
  • Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B. 2005;72(2):239-245.
  • ISO 13356-15 International Organization for Standardization, Implants for Surgery — Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP), ISO 13356 (2015-09), 13pp. ISO - ISO 13356:2015 - Implants for surgery — Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). In.
  • Ramesh S, Lee KYS, Tan CY. A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceram Int. 2018;44(17):20620-20634.
  • Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different lowtemperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed. 2016;60:324-330.
  • Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72(2):145-153.
  • Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-309.
  • Kengtanyakich S, Peampring C. An experimental study on hydrothermal degradation of cubic-containing translucent zirconia. J Adv Prosthodont. 2020;12(5):265- 272.
  • Sato T, Shimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. J Am Ceram Soc. 1985;68(6):356-359.
  • Zhang F, Vanmeensel K, Inokoshi M, et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram. 2015;35(2):741-750.
  • Kosmač T, Oblak Č, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram. 2008;28(5):1085-1090.
  • Ban S, Sato H, Suehiro Y, Nakanishi H, Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B. 2008;87(2):492-498.
  • Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Phase transformation of dental zirconia following artificial aging. J Biomed Mater Res B. 2015;103(7):1519-1523.
  • Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011;7(2):858-865.
  • Peampring C, Kengtanyakich S. Surface roughness and translucency of various translucent zirconia ceramics after hydrothermal aging. Eur J Dent. 2021;16(04):761- 767.
  • Borchers L, Stiesch M, Bach FW, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater. 2010;6(12):4547-4552.
  • Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34(6):879- 890.
  • Leone R, Sorrentino R, Chevalier J, Zarone F, Ferrari M. In vitro aging and mechanical properties of translucent monolithic zirconia. Dent Mater. 2016;32:e98.
  • Kohyama K, Hatakeyama E, Sasaki T, Dan H, Azuma T, Karita K. Effects of sample hardness on human chewing force: a model study using silicone rubber. Arch Oral Biol. 2004;49(10):805-816.
  • Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the loadbearing capacity of dental bridges made of zirconia. Acta Biomaterialia. 2008;4(5):1440-1447.
  • Rodriguez V, Castillo-Oyague R, Lopez-Suarez C, Gonzalo E, Pelaez J, Suarez-Garcia M-J (2016) Fracture load before and after veneering zirconia posterior fixed dental prostheses. J Prosthodont 25:550–556.
  • Munoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent. 2017;63:94- 102.
  • Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dent Mater. 2014;30(12):e396-404.
  • Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int. 2019;50(5):344-348.
  • Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Factors affecting the mechanical behavior of Y-TZP. J Mech Behav Biomed. 2014;37:78-87.
  • Mesic K, Majnaric I, Obhodas J, Barsic G, Mehulic K. The Effect of Aging on Composition and Surface of Translucent Zirconia Ceramic. Acta Stomatol Croat. 2020;54(4):339-352.

Yapay Yaşlandırma İşlemlerinin Zirkonyanın Fiziksel ve Mekanik Özelliklerine Etkileri

Yıl 2024, Cilt: 10 Sayı: 3, 295 - 301, 30.12.2024

Öz

İtriyumla stabilize edilmiş tetragonal zirkonya polikristali, üstün mekanik özellikleri nedeniyle diş hekimliğinde implant dayanaklarının, protetik alt yapıların ve monolitik kronların üretiminde başarı ile kullanılan materyallerden biridir. Zirkonya, tetragonal fazda stabilize edildiğinde yüksek miktardaki çiğneme kuvvetlerine karşı dayanıklılık göstermektedir. Ancak nemli bir ortama maruz kaldığında tanecik büyümesi, yüzey pürüzlülüğünde artış ve mikro çatlakların yayılmasıyla karakterize olan ve bunun sonucunda materyalin mekanik özelliklerinde düşüşle sonuçlanan bir yapısal bozunmaya uğrayabilmektedir. Bu bozunma ise biyomedikal uygulamalarda kullanılan zirkonyanın klinik performansı açısından son derece kritik hale gelebilmektedir. Bu derlemenin amacı literatürde yer alan ve dental zirkonyaya uygulanan yapay yaşlandırma işlemlerinin materyalin fiziksel ve mekanik özelliklerini nasıl etkilediğini değerlendirmektir. Bu amaçla PubMed, Scopus ve Google Scholar veritabanlarında (artificial aging) VE (dental zirconia) VEYA (monolithic zirconia) VEYA (zirconium dioxide) anahtar kelimeleri kullanılarak analiz edildi. 249 sonucun taranmasından sonra 58 çalışma bu incelemeye dahil edildi. İncelenen makalelerin analizi sonucunda farklı yöntemler kullanılarak zirkonyaya yapay yaşlandırma işlemlerinin in-vitro veya in-vivo ortamlarda uygulandığı izlenmiştir. Bununla birlikte, mevcut klinik çalışmalar, protetik uygulamalarda zirkonyanın başarısının yüksek olduğunu göstermektedir.

Kaynakça

  • Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: A comprehensive review. Molecules. 2022;27(5):1699.
  • Alfawaz Y. Zirconia crown as single unit tooth restoration: a literature review. J Contemp Dent Pract. 2016;17(5):418-422.
  • Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119(2):308 e301-308 e307.
  • Zhang Y, Lee JJ, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013;29(12):1201-1208.
  • Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society. 2009;29(7):1245-1255.
  • Durkan R, Deste G, Şimşek H. Monolitik zirkonya seramik sistemlerinin üretim tipleri ile aşınma, optik ve estetik özellikleri. Ata Diş Hek Fak Derg. 2018;28(2):263- 270.
  • Arcila LVC, Ramos NC, Campos TMB, Dapieve KS, Valandro LF, de Melo RM, Bottino MA. Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses. J Adv Prosthodont. 2021 Dec;13(6):385-395.
  • Kulyk V, Duriagina Z, Kostryzhev A, Vasyliv B, Vavrukh V, Marenych O. The effect of yttria content on microstructure, strength, and fracture behavior of yttriastabilized zirconia. Materials (Basel). 2022;15(15):5212.
  • Manziuc MM, Gasparik C, Negucioiu M, et al. Optical properties of translucent zirconia: A review of the literature. Eurobiotech J. 2019;3(1):45-51.
  • Kim HK. Optical and mechanical properties of highly translucent dental zirconia. Materials (Basel). 2020;13(15):3395.
  • Pereira GKR, Venturini AB, Silvestri T, et al. Lowtemperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J Mech Behav Biomed. 2015;55:151-163.
  • Pereira G, Amaral M, Cesar PF, Bottino MC, Kleverlaan CJ, Valandro LF. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP. J Mech Behav Biomed. 2015;45:183-192.
  • Flinn BD, Raigrodski AJ, Singh A, Mancl LA. Effect of hydrothermal degradation on three types of zirconias for dental application. J Prosthet Dent. 2014;112(6):1377- 1384.
  • Xie H, Shen S, Qian M, Zhang F, Chen C, Tay FR. Effects of acid treatment on dental zirconia: An in vitro study. PLoS One. 2015;10(8):e0136263.
  • Deville S, Gremillard L, Chevalier J, Fantozzi G. A critical comparison of methods for the determination of the aging sensitivity in biomedical grade yttria-stabilized zirconia. J Biomed Mater Res B. 2005;72(2):239-245.
  • ISO 13356-15 International Organization for Standardization, Implants for Surgery — Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP), ISO 13356 (2015-09), 13pp. ISO - ISO 13356:2015 - Implants for surgery — Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). In.
  • Ramesh S, Lee KYS, Tan CY. A review on the hydrothermal ageing behaviour of Y-TZP ceramics. Ceram Int. 2018;44(17):20620-20634.
  • Pereira GKR, Muller C, Wandscher VF, Rippe MP, Kleverlaan CJ, Valandro LF. Comparison of different lowtemperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. J Mech Behav Biomed. 2016;60:324-330.
  • Johansson C, Kmet G, Rivera J, Larsson C, Vult Von Steyern P. Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns. Acta Odontol Scand. 2014;72(2):145-153.
  • Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent. 2017;117(2):303-309.
  • Kengtanyakich S, Peampring C. An experimental study on hydrothermal degradation of cubic-containing translucent zirconia. J Adv Prosthodont. 2020;12(5):265- 272.
  • Sato T, Shimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. J Am Ceram Soc. 1985;68(6):356-359.
  • Zhang F, Vanmeensel K, Inokoshi M, et al. Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J Eur Ceram. 2015;35(2):741-750.
  • Kosmač T, Oblak Č, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram. 2008;28(5):1085-1090.
  • Ban S, Sato H, Suehiro Y, Nakanishi H, Nawa M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res B. 2008;87(2):492-498.
  • Lucas TJ, Lawson NC, Janowski GM, Burgess JO. Phase transformation of dental zirconia following artificial aging. J Biomed Mater Res B. 2015;103(7):1519-1523.
  • Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater. 2011;7(2):858-865.
  • Peampring C, Kengtanyakich S. Surface roughness and translucency of various translucent zirconia ceramics after hydrothermal aging. Eur J Dent. 2021;16(04):761- 767.
  • Borchers L, Stiesch M, Bach FW, et al. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater. 2010;6(12):4547-4552.
  • Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34(6):879- 890.
  • Leone R, Sorrentino R, Chevalier J, Zarone F, Ferrari M. In vitro aging and mechanical properties of translucent monolithic zirconia. Dent Mater. 2016;32:e98.
  • Kohyama K, Hatakeyama E, Sasaki T, Dan H, Azuma T, Karita K. Effects of sample hardness on human chewing force: a model study using silicone rubber. Arch Oral Biol. 2004;49(10):805-816.
  • Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the loadbearing capacity of dental bridges made of zirconia. Acta Biomaterialia. 2008;4(5):1440-1447.
  • Rodriguez V, Castillo-Oyague R, Lopez-Suarez C, Gonzalo E, Pelaez J, Suarez-Garcia M-J (2016) Fracture load before and after veneering zirconia posterior fixed dental prostheses. J Prosthodont 25:550–556.
  • Munoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent. 2017;63:94- 102.
  • Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dent Mater. 2014;30(12):e396-404.
  • Elsayed A, Meyer G, Wille S, Kern M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int. 2019;50(5):344-348.
  • Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Factors affecting the mechanical behavior of Y-TZP. J Mech Behav Biomed. 2014;37:78-87.
  • Mesic K, Majnaric I, Obhodas J, Barsic G, Mehulic K. The Effect of Aging on Composition and Surface of Translucent Zirconia Ceramic. Acta Stomatol Croat. 2020;54(4):339-352.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Protez
Bölüm Derleme
Yazarlar

Gözdenur Melike Görgülü 0000-0003-4283-5527

Ferhan Egilmez 0000-0001-9325-8761

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 1 Şubat 2024
Kabul Tarihi 29 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 3

Kaynak Göster

Vancouver Görgülü GM, Egilmez F. Yapay Yaşlandırma İşlemlerinin Zirkonyanın Fiziksel ve Mekanik Özelliklerine Etkileri. Aydin Dental Journal. 2024;10(3):295-301.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)