Derleme
BibTex RIS Kaynak Göster

Effect of Gamma Irradiation on the Microbial Load and Quality of Foods

Yıl 2025, Cilt: 14 Sayı: 1, 31 - 36, 24.06.2025
https://doi.org/10.53913/aduveterinary.1597123

Öz

Foodborne pathogenic microorganisms pose a significant public health issue worldwide, while post-harvest food losses are also considered one of the leading causes of hunger and malnutrition globally. In the food industry, irradiation technology, particularly used as an alternative to thermal processes and regarded as an environmentally friendly method, plays a crucial role in addressing food insecurity and foodborne diseases worldwide. Food irradiation is a non-thermal, technical process in which food is exposed to ionizing or non-ionizing radiation (such as UV, visible light, infrared, radio waves) at specific doses. The irradiation process, which does not involve high temperatures, preserves the food's nutritional value, freshness, and sensory properties (texture, color, taste, and flavor) because it doesn’t damage the structure of food components. The basic principle is that when the irradiation source hits the food, excitation and ionization occur, which inhibits DNA synthesis in living organisms. This effect is primarily used to inhibit the growth of pathogenic microorganisms. Gamma irradiation technology is effective in inhibiting microorganisms/pathogens that cause dangerous diseases and damage food quality, such as Escherichia coli, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus spp. and Salmonella spp. Even low doses (up to 10 kGy, the safe dose limit) affect target groups of microorganisms. In this review discusses the role and applicability of irradiation technology in ensuring the microbiological quality of foods.

Kaynakça

  • Ahmed, S.M., & Hassan, A.B. (2023). Validation of γ-radiation and their effect on phenolic compounds, antioxidant activity, and microbial load of fennel (Foeniculum vulgare) seeds and cinnamon (Cinnamomum verum) sticks. Food Science and Nutrition, 11(4), 1994-2001. https://doi.org/10.1002/fsn3.3233.
  • Ajibola, O.J. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789. https://doi.org/ 10.21608/nrmj.2020.95321
  • Akhter, R., Masoodi, F.A., Wani, T.A., Rather, S.A., & Hussain, P.R. (2021). Synergistic effect of low dose γ-irradiation, natural antimicrobial and antioxidant agents on quality of meat emulsions. Radiation Physics and Chemistry, 189, 1-7. https://doi.org/ 10.1016/j.radphyschem.2021.109724
  • Amit, K.A., Uddin, M., Rahman, R., Rezwanul Islam, S.M., & Khan, M.S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(51). https://doi.org/10.1186/s40066-017-0130-8
  • Arapcheska, M., Spasevska, H., & Ginovska, M. (2020). Effect of irradiation on food safety and quality. Current Trends in Natural Sciences, 9(18), 100-106. https://doi.org/10.47068/ctns.2020.v9i18.014
  • Arvanitoyannis, I.S., Stratakos, A., & Mente, E. (2009). Impact of irradiation on fish and seafood shelf life: a comprehensive review of applications and irradiation detection. Critical Reviews in Food Science and Nutrition, 49(1), 68-112. https://doi.org/10.1080/10408390701764278
  • Bashir, K., Jan, K., Kamble D.B., Maurya V.K., Shumaila Jan, S., & Swer T.L. (2021). History, status and regulatory aspects of gamma irradiation for food processing. Innovative Food Processing Technologies, 101-107. https://doi.org/10.1016/B978-0-08-100596-5.230515
  • Cruz-Zaragoza, E., Ruiz-Gurrola, B., Wacher, C., Flores Espinosa, T., & Barboza-Flores, M. (2011). Gamma radiation effects in coriander (coriandrum sativum L) for consumption in Mexico. Revista Mexicana de Física, 57, 80-86.
  • Edae, B.N. (2023). Food irradiation an effective technology for food safety and security. Food Science & Nutrition Technology, 8(4). https://doi.org/10.23880/fsnt-16000312
  • Ehlermann, D.A.E. (2009). The radura-terminology and food irradiation. Food Control, 20(5), 526-528. https://doi.org/10.1016/j.foodcont.2008.07.023
  • Eugster, A., Murmann, P., Kanzig, A., & Breitenmoser, A. (2018). A specific but nevertheless simple real-time PCR method for the detection of irradiated food shown detailed at the example of garlic (Allium sativum). European Food Research and Technology, 244(5), 819–825. https://doi.org/10.1007/s00217-017-2998-8
  • Food Irradiation Regulation (FIR) (2019). Food Irradiation Regulation. Official Gazette of Publication: 3.10.2019. Nr. 30907
  • Gonçalves, M.P.J., Galotto. M.J., Valenzuela, X., Dinten, C.M., Aguirre, P., & Miltz, J. (2011). Perception and view of consumers on food irradiation and the radura symbol. Radiation Physics and Chemistry, 80(1), 119-122. https:// doi.org/10.1016/j.radphyschem.2010.08.001
  • Gradini, R., Fei, C., Richmund, T., & Newlin, L. (2019). A summary on cutting edge advancements in sterilization and cleaning Technologies in medical, food, and drug industries, and its applicability to spacecraft hardware. Life Sciences in Space Research, 23, 31-49. https:// doi.org/10.1016/j.lssr.2019.05.002
  • Harrell, C.R., Djonov, V., Fellabaum, C., & Volarevic, V. (2018). Risks of using sterilization by gamma radiation: The other side of the coin. International Journal of Medical Sciens, 15(3), 274-279. https:// doi.org/10.7150/ijms.22644
  • Indiarto, R., Irawan, A.N., & Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(1845). https:// doi.org/10.3390/foods12091845
  • Jayathilakan, K., Sultana, K., Reddy, K.J., & Pandey, M.C. (2015). Radiation processing of meat and meat products – an overview. International Journal of New Technology and Research, 1(5), 5-12.
  • Jeong, S.G., Yang, J.E. Park, J.H., Ko, S.H., Choi, I.S., Kim, H.M., Chun, H.H., Kwon, M.J., & Park, H.W. (2020). Gamma irradiation improves the microbiological safety and shelf-life of kimchi seasoning mixture. LWT- Food Science and Technology, 134 (110144). https://doi.org/10.1016/j.lwt.2020.110144
  • Jouki, M. (2013). Evaluation of gamma irradiation and frozen storage on microbial load and physico-chemical quality of turkey breast meat. Radiation Physics and Chemistry, 85, 243-245. https:// doi.org/10.1016/j.radphyschem.2012.12.009
  • Jung, K., Song, B.S., Kim, M.J., Moon, B.G., Go, S.M., Kim, J.K., Lee, Y.J., & Park, J.N. (2015). Effect of X-ray, gamma ray, and electron beam irradiation on the hygienic and physicochemical qualities of red pepper powder. LWT - Food Science and Technology, 63(2), 846-851. . https:// doi.org/10.1016/j.lwt.2015.04.030
  • Kyung, H.K., Ramakrishnan, S.R., & Kwon, J.H. (2019). Dose rates of electron beam and gamma ray irradiation affect microbial decontamination and quality changes in dried red pepper Capsicum annuum L.) powder. Journal of the Science of Food and Agriculture, 99, 632-638. https:// doi.org/10.1002/jsfa.9225
  • Mashak, Z., & Abbasi, J. (2023). Effects of gamma irradiation on microbial, chemical, and organoleptic characteristics of ostrich meat during refrigeration. Journal of Nutrition Fasting and Health, 11(4), 277-285. https:// doi.org/10.22038/JNFH.2023.75918.1475
  • Mshelia R.D., Nathan Isaac Dibal N.I., & Chiroma S.M. (2023). Food irradiation: an effective but under‑utilized technique or food preservations. Association of Food Scientists & Technologists, 60(10), 2517–2525. https:// doi.org/10.1007/s13197-022-05564-4
  • Pillai, S.D., & Pillai, E.T. (2021). Electron beam irradiation technology applications in the food industry. Greenspan, E (Ed.). Encyclopedia of Nuclear Energy (pp. 313-329). Elsevier. https:// doi.org/10.1016/B978-0-12-819725-7.001410
  • Prokopov, T., &Tanchev, S. (2007). Methods of food preservation. Marshall, R.J., & McElhatton, A (Eds.), Food Safety: A Pratical and Case Study Approach (pp. 38-40). Springer Science. https:// doi.org/10.1007/978-0-387-33957-3_1
  • Rahimi, E., Faghihi, R., Baradaran-Ghahfarokhi, M., Alavaian-Ghavanini, A., Baradaran-Ghahfarokhi, H.R., Siavashpour, Z., Farshadi, A., & Farzad Rafie, F. (2013). Effects of gamma irradiation on microbial load and quality characteristics of veal. Advanced Biomedical Research, 2(11), 1-5. https:// doi.org/10.4103/2277-9175.107967
  • Ravindran, R., & Jaiswal, A.K. (2019). Wholesomeness and safety aspects of irradiated foods. Food Chemistry, 285, 363–368. https://doi.org/10.1016/j.foodchem.2019.02.002
  • Roberts P.B. (2016). Food irradiation: Standards, regulations and worldwide trade. Radiation Physics and Chemistry, 129, 30-34. https://doi.org/10.1016/j.radphyschem.2016.06.005
  • Sadecka, J.,, Kolek, E., Salkova, Z., Petrikova, J., & Kovac, M. (2018). Effect of gamma-irradiation on microbial decontamination and organoleptic quality of black pepper (Piper nigrum L.). Czech Journal of Food Sciences, 22, 342-345. https://doi.org/10.17221/10697-CJFS
  • Silva, D.R.G., Haddad, G.B.S., Moura, A.P., Souza, P., Ramos, L.S., Hopkins, D.L., & Ramos, E.M. (2020). Safe cured meat using gamma radiation: Effects on spores of Clostridium sporogenes and technological and sensorial characteristics of low nitrite cooked ham. LWT - Food Science and Technology, 137 (110392). https://doi.org/10.1016/j.lwt.2020.110392
  • Singh, R., & Singh, A. (2020). Applications of food irradiation technology. Defence Life Science Journal, 5(1), 54-62. https://doi.org/10.14429/dlsj.5.14398
  • Zhao, L., Zhang, Y., Guo, S., Xiong, W., Xia, H., Liu, W., Pan, Z., & Venkitasamy, C. (2017). Effect of irradiation on quality of vacuumpacked spicy beef chops. Journal of Food Quality. https:// doi.org/10.1155/2017/1054523

Gama Işınlama Yönteminin Gıdaların Mikrobiyal Yükü ve Kalitesi Üzerine Etkisi

Yıl 2025, Cilt: 14 Sayı: 1, 31 - 36, 24.06.2025
https://doi.org/10.53913/aduveterinary.1597123

Öz

Gıda kaynaklı patojen mikroorganizmalar dünya çapında önemli bir halk sağlığı sorunu oluştururken, hasat sonrası meydana gelen gıda kayıpları da dünya çapında açlığın ve yetersiz beslenmenin önde gelen nedeni olarak değerlendirmektedir. Gıda endüstrisinde özellikle ısıl işlemlere alternatif olarak kullanılan ve çevre dostu yöntem olarak kabul edilen ışınlama teknolojisi dünyadaki gıda güvensizliği ve gıda kaynaklı hastalık sorunlarının çözümünde önemli bir rol oynamaktadır. Gıda ışınlaması, gıdanın iyonlaştırıcı özelliği olan veya olmayan radyasyonlara (UV, görünür ışık, kızılötesi, radyo dalgaları gibi) belirli dozlarda maruz bırakılmasıyla gerçekleşen, ısıl olmayan teknik bir işlemdir. Yüksek sıcaklık uygulaması içermeyen ışınlama işlemi, gıda bileşenlerinin yapısına zarar vermediği için, gıdaların besleyiciliğini, tazeliğini ve duyusal özelliklerini (doku, renk, tat ve aroma) koruyabilmektedir. Temel prensip olarak, ışınlama kaynağının gıda maddesine çarpmasıyla uyarım ve iyonlaşma meydana gelmekte ve bu durum canlılarda DNA sentezini engellemektedir. Bu etki özellikle patojenik mikroorganizmaların gelişmesini engellemek için kullanılmaktadır. Gama ışınlama teknolojisi, Escherichia coli, Camphylobacter jejuni, Listeria monocytogenes, Staphylococcus spp. ve Salmonella spp. gibi tehlikeli hastalıklara neden olan ve gıdaların kalitesine zarar veren mikroorganizmaları/patojenleri inhibe edebilen bir teknoloji olup, düşük dozları bile (10 kGy güvenli doz limiti) hedef mikroorganizma gruplarını etkilemektedir. Bu derlemede, ışınlama teknolojisinin gıdaların mikrobiyolojik kalitesini sağlamadaki rolü ve uygulanabilirliği ele alınmıştır.

Kaynakça

  • Ahmed, S.M., & Hassan, A.B. (2023). Validation of γ-radiation and their effect on phenolic compounds, antioxidant activity, and microbial load of fennel (Foeniculum vulgare) seeds and cinnamon (Cinnamomum verum) sticks. Food Science and Nutrition, 11(4), 1994-2001. https://doi.org/10.1002/fsn3.3233.
  • Ajibola, O.J. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789. https://doi.org/ 10.21608/nrmj.2020.95321
  • Akhter, R., Masoodi, F.A., Wani, T.A., Rather, S.A., & Hussain, P.R. (2021). Synergistic effect of low dose γ-irradiation, natural antimicrobial and antioxidant agents on quality of meat emulsions. Radiation Physics and Chemistry, 189, 1-7. https://doi.org/ 10.1016/j.radphyschem.2021.109724
  • Amit, K.A., Uddin, M., Rahman, R., Rezwanul Islam, S.M., & Khan, M.S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(51). https://doi.org/10.1186/s40066-017-0130-8
  • Arapcheska, M., Spasevska, H., & Ginovska, M. (2020). Effect of irradiation on food safety and quality. Current Trends in Natural Sciences, 9(18), 100-106. https://doi.org/10.47068/ctns.2020.v9i18.014
  • Arvanitoyannis, I.S., Stratakos, A., & Mente, E. (2009). Impact of irradiation on fish and seafood shelf life: a comprehensive review of applications and irradiation detection. Critical Reviews in Food Science and Nutrition, 49(1), 68-112. https://doi.org/10.1080/10408390701764278
  • Bashir, K., Jan, K., Kamble D.B., Maurya V.K., Shumaila Jan, S., & Swer T.L. (2021). History, status and regulatory aspects of gamma irradiation for food processing. Innovative Food Processing Technologies, 101-107. https://doi.org/10.1016/B978-0-08-100596-5.230515
  • Cruz-Zaragoza, E., Ruiz-Gurrola, B., Wacher, C., Flores Espinosa, T., & Barboza-Flores, M. (2011). Gamma radiation effects in coriander (coriandrum sativum L) for consumption in Mexico. Revista Mexicana de Física, 57, 80-86.
  • Edae, B.N. (2023). Food irradiation an effective technology for food safety and security. Food Science & Nutrition Technology, 8(4). https://doi.org/10.23880/fsnt-16000312
  • Ehlermann, D.A.E. (2009). The radura-terminology and food irradiation. Food Control, 20(5), 526-528. https://doi.org/10.1016/j.foodcont.2008.07.023
  • Eugster, A., Murmann, P., Kanzig, A., & Breitenmoser, A. (2018). A specific but nevertheless simple real-time PCR method for the detection of irradiated food shown detailed at the example of garlic (Allium sativum). European Food Research and Technology, 244(5), 819–825. https://doi.org/10.1007/s00217-017-2998-8
  • Food Irradiation Regulation (FIR) (2019). Food Irradiation Regulation. Official Gazette of Publication: 3.10.2019. Nr. 30907
  • Gonçalves, M.P.J., Galotto. M.J., Valenzuela, X., Dinten, C.M., Aguirre, P., & Miltz, J. (2011). Perception and view of consumers on food irradiation and the radura symbol. Radiation Physics and Chemistry, 80(1), 119-122. https:// doi.org/10.1016/j.radphyschem.2010.08.001
  • Gradini, R., Fei, C., Richmund, T., & Newlin, L. (2019). A summary on cutting edge advancements in sterilization and cleaning Technologies in medical, food, and drug industries, and its applicability to spacecraft hardware. Life Sciences in Space Research, 23, 31-49. https:// doi.org/10.1016/j.lssr.2019.05.002
  • Harrell, C.R., Djonov, V., Fellabaum, C., & Volarevic, V. (2018). Risks of using sterilization by gamma radiation: The other side of the coin. International Journal of Medical Sciens, 15(3), 274-279. https:// doi.org/10.7150/ijms.22644
  • Indiarto, R., Irawan, A.N., & Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(1845). https:// doi.org/10.3390/foods12091845
  • Jayathilakan, K., Sultana, K., Reddy, K.J., & Pandey, M.C. (2015). Radiation processing of meat and meat products – an overview. International Journal of New Technology and Research, 1(5), 5-12.
  • Jeong, S.G., Yang, J.E. Park, J.H., Ko, S.H., Choi, I.S., Kim, H.M., Chun, H.H., Kwon, M.J., & Park, H.W. (2020). Gamma irradiation improves the microbiological safety and shelf-life of kimchi seasoning mixture. LWT- Food Science and Technology, 134 (110144). https://doi.org/10.1016/j.lwt.2020.110144
  • Jouki, M. (2013). Evaluation of gamma irradiation and frozen storage on microbial load and physico-chemical quality of turkey breast meat. Radiation Physics and Chemistry, 85, 243-245. https:// doi.org/10.1016/j.radphyschem.2012.12.009
  • Jung, K., Song, B.S., Kim, M.J., Moon, B.G., Go, S.M., Kim, J.K., Lee, Y.J., & Park, J.N. (2015). Effect of X-ray, gamma ray, and electron beam irradiation on the hygienic and physicochemical qualities of red pepper powder. LWT - Food Science and Technology, 63(2), 846-851. . https:// doi.org/10.1016/j.lwt.2015.04.030
  • Kyung, H.K., Ramakrishnan, S.R., & Kwon, J.H. (2019). Dose rates of electron beam and gamma ray irradiation affect microbial decontamination and quality changes in dried red pepper Capsicum annuum L.) powder. Journal of the Science of Food and Agriculture, 99, 632-638. https:// doi.org/10.1002/jsfa.9225
  • Mashak, Z., & Abbasi, J. (2023). Effects of gamma irradiation on microbial, chemical, and organoleptic characteristics of ostrich meat during refrigeration. Journal of Nutrition Fasting and Health, 11(4), 277-285. https:// doi.org/10.22038/JNFH.2023.75918.1475
  • Mshelia R.D., Nathan Isaac Dibal N.I., & Chiroma S.M. (2023). Food irradiation: an effective but under‑utilized technique or food preservations. Association of Food Scientists & Technologists, 60(10), 2517–2525. https:// doi.org/10.1007/s13197-022-05564-4
  • Pillai, S.D., & Pillai, E.T. (2021). Electron beam irradiation technology applications in the food industry. Greenspan, E (Ed.). Encyclopedia of Nuclear Energy (pp. 313-329). Elsevier. https:// doi.org/10.1016/B978-0-12-819725-7.001410
  • Prokopov, T., &Tanchev, S. (2007). Methods of food preservation. Marshall, R.J., & McElhatton, A (Eds.), Food Safety: A Pratical and Case Study Approach (pp. 38-40). Springer Science. https:// doi.org/10.1007/978-0-387-33957-3_1
  • Rahimi, E., Faghihi, R., Baradaran-Ghahfarokhi, M., Alavaian-Ghavanini, A., Baradaran-Ghahfarokhi, H.R., Siavashpour, Z., Farshadi, A., & Farzad Rafie, F. (2013). Effects of gamma irradiation on microbial load and quality characteristics of veal. Advanced Biomedical Research, 2(11), 1-5. https:// doi.org/10.4103/2277-9175.107967
  • Ravindran, R., & Jaiswal, A.K. (2019). Wholesomeness and safety aspects of irradiated foods. Food Chemistry, 285, 363–368. https://doi.org/10.1016/j.foodchem.2019.02.002
  • Roberts P.B. (2016). Food irradiation: Standards, regulations and worldwide trade. Radiation Physics and Chemistry, 129, 30-34. https://doi.org/10.1016/j.radphyschem.2016.06.005
  • Sadecka, J.,, Kolek, E., Salkova, Z., Petrikova, J., & Kovac, M. (2018). Effect of gamma-irradiation on microbial decontamination and organoleptic quality of black pepper (Piper nigrum L.). Czech Journal of Food Sciences, 22, 342-345. https://doi.org/10.17221/10697-CJFS
  • Silva, D.R.G., Haddad, G.B.S., Moura, A.P., Souza, P., Ramos, L.S., Hopkins, D.L., & Ramos, E.M. (2020). Safe cured meat using gamma radiation: Effects on spores of Clostridium sporogenes and technological and sensorial characteristics of low nitrite cooked ham. LWT - Food Science and Technology, 137 (110392). https://doi.org/10.1016/j.lwt.2020.110392
  • Singh, R., & Singh, A. (2020). Applications of food irradiation technology. Defence Life Science Journal, 5(1), 54-62. https://doi.org/10.14429/dlsj.5.14398
  • Zhao, L., Zhang, Y., Guo, S., Xiong, W., Xia, H., Liu, W., Pan, Z., & Venkitasamy, C. (2017). Effect of irradiation on quality of vacuumpacked spicy beef chops. Journal of Food Quality. https:// doi.org/10.1155/2017/1054523
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Bilimleri (Diğer)
Bölüm Derleme
Yazarlar

Hilal Demirpençe 0000-0001-6121-8909

Devrim Beyaz 0000-0001-8935-9850

Gönderilme Tarihi 6 Aralık 2024
Kabul Tarihi 10 Şubat 2025
Yayımlanma Tarihi 24 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Demirpençe, H., & Beyaz, D. (2025). Effect of Gamma Irradiation on the Microbial Load and Quality of Foods. Animal Health Production and Hygiene, 14(1), 31-36. https://doi.org/10.53913/aduveterinary.1597123