Three-Dimensional Morphometric and Mechanical Analysis of the Rabbit Humerus Using CT-Based Methods
Yıl 2025,
Cilt: 14 Sayı: 2, 65 - 72, 25.12.2025
Firuze Türker Yavaş
,
Figen Sevil Kilimci
Öz
Three-dimensional morphometric and biomechanical assessment of the rabbit humerus was performed using computed tomography (CT)-based 3D reconstruction and quantitative image analysis. The study aimed to determine morphometric and mechanical data of the humerus and to evaluate the influence of sex and side. The mean humerus lengths were measured as 68.05 mm in females and 57.14 mm in males, showing a statistically significant difference (P = 0.000), whereas no significant side-related difference was observed (P = 0.091). The distribution of the cross-sectional area (CSA) indicated that the largest CSA values occurred between 7.5–22.0% of the bone length in females and between 3–30% in males, while the smallest CSA values were located in the distal third (43–100%). The (CSA/Length) × 100 index showed no significant sex difference (P > 0.05). Males exhibited significantly higher maximum diameter, perimeter, and maximum moment of inertia values than females (P < 0.05), whereas right humeri demonstrated greater Imax values compared with the left (P < 0.05). These findings indicate that the morphometric and mechanical data of the rabbit humerus are influenced mainly by sex and, to a lesser extent, by laterality. The mid-diaphyseal region (3–30%) showed the highest mechanical competence, supporting its relevance for biomechanical and orthopaedic applications.
Etik Beyan
All specimens originated from animals previously used in an unrelated research project approved by the Aydın Adnan Menderes University Animal Experiments Local Ethics Committee (Protocol No: 645583101/2017/141).
Kaynakça
-
Amin, S., & Khosla, S. (2012). Sex- and age-related differences inbone microarchitecture in men relative to women assessedby high-resolution peripheral quantitative computedtomography. Journal of Osteoporosis, 2012(1), 129760. https://doi.org/10.1155/2012/129760
-
Ammann, P., & Rizzoli, R. (2003). Bone strength and itsdeterminants. Osteoporosis International, 14(3), 13-18. https://doi.org/10.1007/s00198-002-1345-4
-
An, Y.H., & Friedman, R.J. (2020). Animal selections in orthopaedicresearch. In Y.H. An & R. J. Friedman (Eds.), Animal models in orthopaedic research (pp. 39–57). CRC Press.
-
Arens, D., Wilke, M.M., Stoddart, M.J. (2015). A rabbit humerus modelof plating and nailing with an implant-related bone infection.European Cells & Materials, 30, 148–162. https://doi.org/10.22203/ecm.v030a11
-
Barak, M.M., Lieberman, D.E., Hublin, J.J. (2011). A Wolff in sheep’sclothing: trabecular bone adaptation in response to changes injoint loading orientation. Bone, 49(6), 1141–1151. https://doi.
org/10.1016/j.bone.2011.08.020
-
Biewener A.A. (1989). Scaling body support in mammals: limb postureand muscle mechanics. Science, 245(4913), 45–48. https://doi.org/10.1126/science.2740914
-
Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J.,Müller, R. (2010). Guidelines for assessment of bone microstructurein rodents using micro-computed tomography. Journal of Bone andMineral Research, 25(7), 1468–1486. https://doi.org/10.1002/jbmr.141
-
Carlson, K.J., Judex, S. (2007). Increased non-linear locomotion altersdiaphyseal bone shape. The Journal of Experimental Biology,(17), 3117–3125. https://doi.org/10.1242/jeb.006544
-
Castañeda, S., Largo, R., Calvo, E., Rodríguez-Salvanés, F., Marcos, M.E.,Díaz-Curiel, M., & Herrero-Beaumont, G. (2006). Bone mineralmeasurements of subchondral and trabecular bone in healthy andosteoporotic rabbits. Skeletal Radiology, 35(1), 34–41. https://doi.org/10.1007/s00256-005-0022-z
-
Castañeda, S., Calvo, E., Largo, R., González-González, R., de laPiedra, C., Díaz-Curiel, M., & Herrero-Beaumont, G. (2008).Characterization of a new experimental model of osteoporosis in rabbits. Journal of Bone and Mineral Metabolism, 26(1), 53–59. https://doi.org/10.1007/s00774-007-0797-1
-
Christen, P., Ito, K., Ellouz, R., Boutroy, S., Sornay-Rendu, E., Chapurlat,R. D., Van Rietbergen, B. (2014). Bone remodelling in humansis load-driven but not lazy. Nature Communications, 5(1), 4855.
https://doi.org/10.1038/ncomms5855
-
Currey, J.D. (2012). The structure and mechanics of bone. Journal ofMaterials Science, 47(1), 41-54. https://doi.org/10.1007/s10853-011-5914-9
-
Davolt, M.L., Davis, E., McCleery, B., Davis, G. (2022). Biomechanicalanalysis of 3 fixation techniques in rabbit radius and humerusbones. The Canadian Veterinary Journal, 63(5), 521–527.
-
Frost H.M. (2003). Bone’s mechanostat: a 2003 update. The AnatomicalRecord. Part A, Discoveries in Molecular, Cellular, and EvolutionaryBiology, 275(2), 1081–1101. https://doi.org/10.1002/ar.a.10119
-
Grumet, R.C., Hadley, S., Diltz, M.V., Lee, T.Q., & Gupta, R. (2009).Development of a new model for rotator cuff pathology: the rabbitsubscapularis muscle. Acta Orthopaedica, 80(1), 97–103. https://
doi.org/10.1080/17453670902807425
-
Harrison, K.D., Hiebert, B.D., Panahifar, A., Andronowski, J.M., Ashique,A.M., King, G.A., …, & Cooper, D.M. (2020). Cortical bone porosityin rabbit models of osteoporosis. Journal of Bone and MineralResearch, 35(11), 2211–2228. https://doi.org/10.1002/jbmr.4124
-
Hirano, T., Burr, D.B., Turner, C.H., Sato, M., Cain, R.L., & Hock, J.M.(1999). Anabolic effects of human biosynthetic parathyroidhormone fragment (1-34), LY333334, on remodeling andmechanical properties of cortical bone in rabbits. Journal of Boneand Mineral Research, 14(4), 536–545. https://doi.org/10.1359/jbmr.1999.14.4.536
-
Huang, S., Tam, M.Y., Ho, W.H.C., Wong, H.K., Zhou, M., Zeng, C., …,& Wang, D.M. (2024). Establishing a rabbit model with massivesupraspinatus tendon defect for investigating scaffold-assistedtendon repair. Biological Procedures Online, 26(1), 31. https://doi.org/10.1186/s12575-024-00256-z
-
Huie, J.M., Summers, A.P., Kawano, S.M. (2022). Segment Geometry: A
tool for measuring second moment of area in 3D slicer. Integrative
Organismal Biology, 4(1), obac009. https://doi.org/10.1093/iob/
obac009
-
Lieberman, D.E., Polk, J.D., Demes, B. (2004). Predicting long bone
loading from cross-sectional geometry. American Journal of
Physical Anthropology, 123(2), 156–171. https://doi.org/10.1002/
ajpa.10316
-
Lowry, K.J., Hamson, K.R., Bear, L., Peng, Y.B., Calaluce, R., Evans, M.L.,
…, & Allen, W.C. (1997). Polycaprolactone/glass bioabsorbable
implant in a rabbit humerus fracture model. Journal of Biomedical
Materials Research, 36(4), 536–541. https://doi.org/10.1002/
(sici)1097-4636(19970915)36:4<536::aid-jbm12>3.0.co;2-8
-
Massie, A.M., Kapatkin, A.S., Garcia, T.C., Guzman, D.S., Chou, P.Y., &
Stover, S.M. (2019). Effects of hole diameter on torsional mechanical
properties of the rabbit femur. Veterinary and Comparative
Orthopaedics and Traumatology, 32(1), 51–58. https://doi.
org/10.1055/s-0038-1676331
-
Maitirouzi J., Yanna L., Abulizi A., Aihemaitiniyazi A., Kuerban S,
Shaojun S.H. (2017). Effects of Uygur sand therapy on the
mechanical properties of femurs in osteoarthritic rabbits. Bio-
Medical Materials and Engineering, 28(6), 633–642. https://doi.
org/10.3233/BME-171701
-
Ohnishi I, Oikawa K, Tsuji K.T., Ichikawa T., Kurokawa T., (2003) A femoral
neck fracture model in rabbits. Journal of Biomechanics, 36(3), 431-
442. https://doi.org/10.1016/S0021-9290(02)00363-9.
-
Pearson, O.M. and Lieberman, D.E. (2004). The aging of Wolff’s
“law”: ontogeny and responses to mechanical loading in cortical
bone. American Journal of Physical Anthropology, 125(S39), 63–99.
https://doi.org/10.1002/ajpa.20155
Tavşan Humerusunun BT Tabanlı Yöntemler Kullanılarak Üç Boyutlu Morfometrik ve Mekanik Analizi
Yıl 2025,
Cilt: 14 Sayı: 2, 65 - 72, 25.12.2025
Firuze Türker Yavaş
,
Figen Sevil Kilimci
Öz
Üç boyutlu morfometrik ve biyomekanik değerlendirme, bilgisayarlı tomografi (BT) tabanlı 3D rekonstrüksiyon ve kantitatif görüntü analizi kullanılarak tavşan humerusu üzerinde gerçekleştirildi. Çalışmanın amacı, humerusun morfometrik ve mekanik verilerini belirlemek ve cinsiyet ile yönün etkisini değerlendirmekti. Ortalama humerus uzunlukları dişilerde 68.05 mm, erkeklerde ise 57.14 mm olarak ölçüldü ve bu fark istatistiksel olarak anlamlı bulundu (P = 0.000). Buna karşın, sağ ve sol humerus arasında anlamlı bir fark tespit edilmedi (P = 0.091). Kesit alanı (CSA) dağılımı, en yüksek CSA değerlerinin dişilerde humerus uzunluğunun %7,5–22.0’si arasında, erkeklerde ise %3–30’u arasında yer aldığını; en düşük CSA değerlerinin ise distal üçte birlik bölgede (%43–100) bulunduğunu ortaya koydu. (CSA/Uzunluk) × 100 indeksi cinsiyetler arasında anlamlı bir farklılık göstermedi (P> 0.05). Erkeklerde maksimum çap, periosteal çevre ve maksimum atalet momenti (Imax) değerleri dişilere kıyasla anlamlı derecede daha yüksek bulundu (P <0.05). Sağ humerusların Imax değerleri sol tarafa göre daha yüksek bulundu (P < 0.05). Bu bulgular, tavşan humerusunun morfometrik ve mekanik özelliklerinin esas olarak cinsiyete ve ikinci derecede de yön farklılıklarına bağlı olduğunu göstermektedir. Humerusun proksimal–orta diyafiz bölgesi (%3–30), en yüksek yapısal dayanımı göstermiş olup biyomekanik ve ortopedik araştırmalar açısından önemli bir bölge olarak belirlenmiştir.
Etik Beyan
Tüm örnekler, Aydın Adnan Menderes Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu (Protokol No: 645583101/2017/141) tarafından onaylanan, daha önce başka bir araştırma projesinde kullanılan hayvanlardan elde edildi.
Kaynakça
-
Amin, S., & Khosla, S. (2012). Sex- and age-related differences inbone microarchitecture in men relative to women assessedby high-resolution peripheral quantitative computedtomography. Journal of Osteoporosis, 2012(1), 129760. https://doi.org/10.1155/2012/129760
-
Ammann, P., & Rizzoli, R. (2003). Bone strength and itsdeterminants. Osteoporosis International, 14(3), 13-18. https://doi.org/10.1007/s00198-002-1345-4
-
An, Y.H., & Friedman, R.J. (2020). Animal selections in orthopaedicresearch. In Y.H. An & R. J. Friedman (Eds.), Animal models in orthopaedic research (pp. 39–57). CRC Press.
-
Arens, D., Wilke, M.M., Stoddart, M.J. (2015). A rabbit humerus modelof plating and nailing with an implant-related bone infection.European Cells & Materials, 30, 148–162. https://doi.org/10.22203/ecm.v030a11
-
Barak, M.M., Lieberman, D.E., Hublin, J.J. (2011). A Wolff in sheep’sclothing: trabecular bone adaptation in response to changes injoint loading orientation. Bone, 49(6), 1141–1151. https://doi.
org/10.1016/j.bone.2011.08.020
-
Biewener A.A. (1989). Scaling body support in mammals: limb postureand muscle mechanics. Science, 245(4913), 45–48. https://doi.org/10.1126/science.2740914
-
Bouxsein, M.L., Boyd, S.K., Christiansen, B.A., Guldberg, R.E., Jepsen, K.J.,Müller, R. (2010). Guidelines for assessment of bone microstructurein rodents using micro-computed tomography. Journal of Bone andMineral Research, 25(7), 1468–1486. https://doi.org/10.1002/jbmr.141
-
Carlson, K.J., Judex, S. (2007). Increased non-linear locomotion altersdiaphyseal bone shape. The Journal of Experimental Biology,(17), 3117–3125. https://doi.org/10.1242/jeb.006544
-
Castañeda, S., Largo, R., Calvo, E., Rodríguez-Salvanés, F., Marcos, M.E.,Díaz-Curiel, M., & Herrero-Beaumont, G. (2006). Bone mineralmeasurements of subchondral and trabecular bone in healthy andosteoporotic rabbits. Skeletal Radiology, 35(1), 34–41. https://doi.org/10.1007/s00256-005-0022-z
-
Castañeda, S., Calvo, E., Largo, R., González-González, R., de laPiedra, C., Díaz-Curiel, M., & Herrero-Beaumont, G. (2008).Characterization of a new experimental model of osteoporosis in rabbits. Journal of Bone and Mineral Metabolism, 26(1), 53–59. https://doi.org/10.1007/s00774-007-0797-1
-
Christen, P., Ito, K., Ellouz, R., Boutroy, S., Sornay-Rendu, E., Chapurlat,R. D., Van Rietbergen, B. (2014). Bone remodelling in humansis load-driven but not lazy. Nature Communications, 5(1), 4855.
https://doi.org/10.1038/ncomms5855
-
Currey, J.D. (2012). The structure and mechanics of bone. Journal ofMaterials Science, 47(1), 41-54. https://doi.org/10.1007/s10853-011-5914-9
-
Davolt, M.L., Davis, E., McCleery, B., Davis, G. (2022). Biomechanicalanalysis of 3 fixation techniques in rabbit radius and humerusbones. The Canadian Veterinary Journal, 63(5), 521–527.
-
Frost H.M. (2003). Bone’s mechanostat: a 2003 update. The AnatomicalRecord. Part A, Discoveries in Molecular, Cellular, and EvolutionaryBiology, 275(2), 1081–1101. https://doi.org/10.1002/ar.a.10119
-
Grumet, R.C., Hadley, S., Diltz, M.V., Lee, T.Q., & Gupta, R. (2009).Development of a new model for rotator cuff pathology: the rabbitsubscapularis muscle. Acta Orthopaedica, 80(1), 97–103. https://
doi.org/10.1080/17453670902807425
-
Harrison, K.D., Hiebert, B.D., Panahifar, A., Andronowski, J.M., Ashique,A.M., King, G.A., …, & Cooper, D.M. (2020). Cortical bone porosityin rabbit models of osteoporosis. Journal of Bone and MineralResearch, 35(11), 2211–2228. https://doi.org/10.1002/jbmr.4124
-
Hirano, T., Burr, D.B., Turner, C.H., Sato, M., Cain, R.L., & Hock, J.M.(1999). Anabolic effects of human biosynthetic parathyroidhormone fragment (1-34), LY333334, on remodeling andmechanical properties of cortical bone in rabbits. Journal of Boneand Mineral Research, 14(4), 536–545. https://doi.org/10.1359/jbmr.1999.14.4.536
-
Huang, S., Tam, M.Y., Ho, W.H.C., Wong, H.K., Zhou, M., Zeng, C., …,& Wang, D.M. (2024). Establishing a rabbit model with massivesupraspinatus tendon defect for investigating scaffold-assistedtendon repair. Biological Procedures Online, 26(1), 31. https://doi.org/10.1186/s12575-024-00256-z
-
Huie, J.M., Summers, A.P., Kawano, S.M. (2022). Segment Geometry: A
tool for measuring second moment of area in 3D slicer. Integrative
Organismal Biology, 4(1), obac009. https://doi.org/10.1093/iob/
obac009
-
Lieberman, D.E., Polk, J.D., Demes, B. (2004). Predicting long bone
loading from cross-sectional geometry. American Journal of
Physical Anthropology, 123(2), 156–171. https://doi.org/10.1002/
ajpa.10316
-
Lowry, K.J., Hamson, K.R., Bear, L., Peng, Y.B., Calaluce, R., Evans, M.L.,
…, & Allen, W.C. (1997). Polycaprolactone/glass bioabsorbable
implant in a rabbit humerus fracture model. Journal of Biomedical
Materials Research, 36(4), 536–541. https://doi.org/10.1002/
(sici)1097-4636(19970915)36:4<536::aid-jbm12>3.0.co;2-8
-
Massie, A.M., Kapatkin, A.S., Garcia, T.C., Guzman, D.S., Chou, P.Y., &
Stover, S.M. (2019). Effects of hole diameter on torsional mechanical
properties of the rabbit femur. Veterinary and Comparative
Orthopaedics and Traumatology, 32(1), 51–58. https://doi.
org/10.1055/s-0038-1676331
-
Maitirouzi J., Yanna L., Abulizi A., Aihemaitiniyazi A., Kuerban S,
Shaojun S.H. (2017). Effects of Uygur sand therapy on the
mechanical properties of femurs in osteoarthritic rabbits. Bio-
Medical Materials and Engineering, 28(6), 633–642. https://doi.
org/10.3233/BME-171701
-
Ohnishi I, Oikawa K, Tsuji K.T., Ichikawa T., Kurokawa T., (2003) A femoral
neck fracture model in rabbits. Journal of Biomechanics, 36(3), 431-
442. https://doi.org/10.1016/S0021-9290(02)00363-9.
-
Pearson, O.M. and Lieberman, D.E. (2004). The aging of Wolff’s
“law”: ontogeny and responses to mechanical loading in cortical
bone. American Journal of Physical Anthropology, 125(S39), 63–99.
https://doi.org/10.1002/ajpa.20155