BibTex RIS Kaynak Göster

The Investigaton of the Protective Effect of Folic Acid on Experimental Bisphenol A Toxication in Rats

Yıl 2019, Cilt: 8 Sayı: 2, 642 - 646, 01.06.2019

Öz

Background/Aim: Bisphenol A BPA , has an important place among substances that cause oxidative damage due to its increasing negative effects on environment, animal and human health due to its increasing use in industrial production day by day. Folic acid is a water-soluble B group vitamin, also called pteroilglutamic acid, and is coenzyme in cellular reactions. Studies have reported that folic acid is effective against reactive oxygen species and free radicals. The aim of this study was to investigate the protective effect of folic acid on BPA induced oxidative DNA damage. Material and Method: Thirty five Wistar albino rats rats were divided into five groups as Control, Folic acid, Cyclophosphamide, BPA and BPA+Folic acid n=7 . BPA 50 mg/kg/day and folic acid 20 mg/kg/day were orally given to rats for 10 days. At the end of the experimental study, catalase CAT and superoxide dismutase SOD activities and glutathione GSH and malondialdehyde MDA levels were analysed spectrophotometric in the liver, kidney, brain and testicular tissue of rats. Results and Conclusion: When compared with BPA group, it was found that SOD and CAT excluding liver tissue activities and GSH levels excluding brain tissue were significantly higher BPA + folic acid group. There was no significant difference in testicular tissue. When compared with BPA group, MDA levels of liver, kidney and testicular tissues were found to be statistically lower in the BPA + folic acid group. As a result, folic acid has prevented oxidative damage caused by BPA.

Kaynakça

  • Aebi H (1984). Catalase in vitro assay methods, Methods in Enzymology,105, 121-126.
  • Atkinson A, Roy D (1995). In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolites, Biochemical and Biophysical Research Communications, 210(2), 424-433.
  • Bindhumol V, Chitra KC, Mathur PP (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats, Toxicolgy, 188(2), 117-124.
  • Chen M, Xu B, Ji W, Qiao S, Hu N, Hu Y, Wu W, Qiu L, Zhang R, Wang Y, Wang S, Zhou Z, Xia Y, Wang X (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study, PLoS One, 7(9):e44754.
  • Chitra KC, Latchoumycandane C, Mathur PP (2003). Induction of oxidative stress by Bisphenol A epididiymal sperm of rats, Toxicology, 185(1), 119-127.
  • Chitra KC, Mathur PP (2004). Vitamin E prevents nonylphenol-induced oxidative stres in testis of rats, Indian Journal of Experimental Biology, 42(2), 220-223.
  • El-Beshbishy HA, Aly HAA, El-Shafey M (2013). Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats, Toxicology and Industrial Health, 29(10), 875-877.
  • Gules O, Kum S, Yıldız M, Boyacıoğlu M, Ahmad E, Naseer Z, Eren U (2019). Protective effect of coenzyme Q10 against bisphenol-Ainduced toxicity in the rat testes. Toxicology and Industrial Health, 35(7), 466-481.
  • Iso T, Watabane T, Iwamoto T, Shimamoto A, Fruichi Y (2006). DNA damage caused by bisphenol A and estradiol through esrogenic activity, Biological and Pharmaceutical Bulletin, 29(2), 206-210.
  • Kabuto H, Amakawa M, Shishiberi T (2004). Exposure to Bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice, Life Scientology, 74, 2931-2940.
  • Korkmaz A, Ahbab MA, Ahbab, Kolankaya D, Barlas N (2010). Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats, Food and Chemical Toxicology, 48, 2865-2871.
  • Korkmaz A, Aydoğan M, Kolankaya D, Barlas, N (2011). Vitamin C coadministration augments bisphenol a, nonylphenol and octylphenol induced oxidative damage on kidney of rats, Environmental Toxicology, 26(4) 325-337.
  • Lintellmann J, Katayama A, Kurihara N, Shore L, Wenzel A (2003). Endocrine disrupters in the environment, Pure and Applied Chemistry, 75(5), 631-681.
  • Lukacova J, Jambor T, Knazicka Z, Tvrda E, Kolesarova A, Lukac N (2015). Dose- and time-dependent effects of bisphenol A on bovine spermatozoa in vitro. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 50(7), 669-676.
  • Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006). Endocrine disruptors and reproductive health: The case of Bisphenol-A, Molecular and Cellular Endocrinology, 254-255, 179-186.
  • Markey CM, Michaelson CL, Sonnenschein C, Soto AM (2001). Alkylphenos and bisphenol A as enviromental estrogens. In: Metzler M. (ed) The Handbook of Enviromental Chemistry, Berlin Heidelberg, Germany, 7, 129-153
  • Mccaroll N, Keshava N, Cimino M, Chu M, Dearfield K, Keshava C, Kligerman A, Owen R, Protzel A, Putzrath R, Schoeny R (2008). An evaluation of the mode of action framework for mutagenic carcinogenesis case study: cyclophosphamide. Environmental and Molecular Mutagenesis, 49, 117-131.
  • Megan EB, Harward L, Criscione-Schreiber L, Pisetsky D, Copland S (2012). Anti-müllerian hormone A better marker of ovarian damage from cyclophosphamide. Arthritis & Rheumatology, 64(5), 1305- 1310.
  • Mohammadi A, Omrani L, Omrani LR, Kiani F, Eshraghian A, Azizi Z, Omrani GR (2012). Protective effect of folic acid on cyclosporineinduced bone loss in rats, Transplant International, 25(1), 127-133.
  • Nakagawa Y, Tayama S (2000). Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes, Archives Toxicology, 74(2), 99-105.
  • Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(1), 351-358.
  • Ozolins TW (2010). Cyclophosphamide and The Teratology Society: An Awkward Marriage. Birth Defects Research (Part B), 89, 289-299.
  • Sajiki J, Yanagibori R, Kobayashi R (2010). Study of experiment on leaching of bisphenol A from infant books to artificial saliva, Nihon Eiseigaku Zasshi (Japanesse Journal of Hygiene, 65(3), 467-470.
  • Sangai NP, Verma RJ, Trivedi MH (2012). Testing the efficacy of quercetin in mitigating bisphenol a toxicity in liver and kidney of mice. Toxicology and Industrial Health, 30, 581-597.
  • Shalaby MA, El Zorba HY, Ziada RM (2010). Reproductive toxicity of methomyl insecticide in male rats and protective effect of folic acid, Food and Chemical Toxicology, 48(11), 3221-3226.
  • Staples CA, Dorn Pb, Klecka GM, O’block ST, Harris LR (1998). A Rewiev of the Enviromental Fate, Effects and Exposures of Bisphenol A, Chemosphere, 36(10), 2149-2173.
  • Sun Y, Oberley LW, Li Y (1988). A simple for clinical assay of superoxide dismutase, Clinical Chemistry, 34(3), 497-500.
  • Tietze F (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502-522.
  • Tiwaria D, Kamblea J, Chilgundea S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanagea G (2012). Clastogenic and mutagenic effectes of bisphenol A: An endocrine disruptor, Mutation Research / Genetic Toxicology and Environmental Mutagenesis, 743(1-2), 83-90.
  • Yu C, Tai F, Song Z, Wu R, Zhang X, He F (2011). Pubertal exposure to bisphenol A disrupts behavior in adult C57BL/6J mice, Environmental toxicology and pharmascology, 31(1), 88-99.
  • Zhou J, Zhu X, Cai Z (2011). The impacts of bisphenol A (BFA) on abalone (Haliotis diversicolor supertexta) embriyonic development, Chemosphere, 82(3), 443-450.

Ratlarda Deneysel Bisfenol A Toksikasyonunda Folik Asitin Koruyucu Etkilerinin Araştırılması

Yıl 2019, Cilt: 8 Sayı: 2, 642 - 646, 01.06.2019

Öz

Özbilgi/Amaç: Bisfenol A BPA , endüstriyel üretimde her geçen gün artan yoğun kullanımına bağlı olarak çevre, hayvan ve insan sağlığı üzerinde artan olumsuz etkileri nedeniyle oksidatif hasara yol açan maddeler arasında önemli yere sahiptir. Folik asit pteroilglutamik asit olarak da adlandırılan suda çözünen B grubu bir vitamindir ve hücresel reaksiyonlarda koenzimdir. Yapılan çalışmalarda folik asidin reaktif oksjen türlerine ve serbest radikallere karşı etkili olduğu bildirilmiştir. Bu çalışmada BPA ile deneysel olarak oluşturulmuş oksidatif hasarda folik asitin koruyucu etkinliği araştırıldı. Materyal ve Metot: 35 adet erkek Wistar albino rat 5 gruba ayrıldı ve kontrol, BPA, folik asit, sikloofosfamid ve BPA+folik asit grupları oluşturuldu n=7 . BPA 50 mg/kg/gün ve folik asit 20 mg/kg dozda oral gavaj ile 10 gün süreyle verildi. Deneysel aşamanın bitiminde karaciğer, böbrek, beyin ve testis dokularında katalaz CAT ve süperoksid dismutaz SOD aktiviteleri ile glutatyon GSH ve malondialdehid MDA seviyeleri spektrofotometrik ölçüldü. Bulgular ve Sonuç: BPA grubuyla karşılaştırıldığında BPA+folik asit grubuna ait dokularda SOD ve CAT karaciğer dokusu hariç aktiviteleri ile GSH düzeylerinin beyin dokusu hariç anlamlı olarak yüksek olduğu saptandı. Testis dokusunda ise herhangi bir anlamlı fark belirlenmedi. Karaciğer, böbrek ve testis dokularına ait MDA seviyelerinin BPA grubuyla kıyaslandığında BPA+ folik asit grubunda istatistiksel olarak düşük olduğu belirlendi. Sonuç olarak BPA’nın neden olduğu oksidatif hasar folik asit tarafından engellenebilir.

Kaynakça

  • Aebi H (1984). Catalase in vitro assay methods, Methods in Enzymology,105, 121-126.
  • Atkinson A, Roy D (1995). In vitro conversion of environmental estrogenic chemical bisphenol A to DNA binding metabolites, Biochemical and Biophysical Research Communications, 210(2), 424-433.
  • Bindhumol V, Chitra KC, Mathur PP (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats, Toxicolgy, 188(2), 117-124.
  • Chen M, Xu B, Ji W, Qiao S, Hu N, Hu Y, Wu W, Qiu L, Zhang R, Wang Y, Wang S, Zhou Z, Xia Y, Wang X (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study, PLoS One, 7(9):e44754.
  • Chitra KC, Latchoumycandane C, Mathur PP (2003). Induction of oxidative stress by Bisphenol A epididiymal sperm of rats, Toxicology, 185(1), 119-127.
  • Chitra KC, Mathur PP (2004). Vitamin E prevents nonylphenol-induced oxidative stres in testis of rats, Indian Journal of Experimental Biology, 42(2), 220-223.
  • El-Beshbishy HA, Aly HAA, El-Shafey M (2013). Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats, Toxicology and Industrial Health, 29(10), 875-877.
  • Gules O, Kum S, Yıldız M, Boyacıoğlu M, Ahmad E, Naseer Z, Eren U (2019). Protective effect of coenzyme Q10 against bisphenol-Ainduced toxicity in the rat testes. Toxicology and Industrial Health, 35(7), 466-481.
  • Iso T, Watabane T, Iwamoto T, Shimamoto A, Fruichi Y (2006). DNA damage caused by bisphenol A and estradiol through esrogenic activity, Biological and Pharmaceutical Bulletin, 29(2), 206-210.
  • Kabuto H, Amakawa M, Shishiberi T (2004). Exposure to Bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice, Life Scientology, 74, 2931-2940.
  • Korkmaz A, Ahbab MA, Ahbab, Kolankaya D, Barlas N (2010). Influence of vitamin C on bisphenol A, nonylphenol and octylphenol induced oxidative damages in liver of male rats, Food and Chemical Toxicology, 48, 2865-2871.
  • Korkmaz A, Aydoğan M, Kolankaya D, Barlas, N (2011). Vitamin C coadministration augments bisphenol a, nonylphenol and octylphenol induced oxidative damage on kidney of rats, Environmental Toxicology, 26(4) 325-337.
  • Lintellmann J, Katayama A, Kurihara N, Shore L, Wenzel A (2003). Endocrine disrupters in the environment, Pure and Applied Chemistry, 75(5), 631-681.
  • Lukacova J, Jambor T, Knazicka Z, Tvrda E, Kolesarova A, Lukac N (2015). Dose- and time-dependent effects of bisphenol A on bovine spermatozoa in vitro. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering 50(7), 669-676.
  • Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006). Endocrine disruptors and reproductive health: The case of Bisphenol-A, Molecular and Cellular Endocrinology, 254-255, 179-186.
  • Markey CM, Michaelson CL, Sonnenschein C, Soto AM (2001). Alkylphenos and bisphenol A as enviromental estrogens. In: Metzler M. (ed) The Handbook of Enviromental Chemistry, Berlin Heidelberg, Germany, 7, 129-153
  • Mccaroll N, Keshava N, Cimino M, Chu M, Dearfield K, Keshava C, Kligerman A, Owen R, Protzel A, Putzrath R, Schoeny R (2008). An evaluation of the mode of action framework for mutagenic carcinogenesis case study: cyclophosphamide. Environmental and Molecular Mutagenesis, 49, 117-131.
  • Megan EB, Harward L, Criscione-Schreiber L, Pisetsky D, Copland S (2012). Anti-müllerian hormone A better marker of ovarian damage from cyclophosphamide. Arthritis & Rheumatology, 64(5), 1305- 1310.
  • Mohammadi A, Omrani L, Omrani LR, Kiani F, Eshraghian A, Azizi Z, Omrani GR (2012). Protective effect of folic acid on cyclosporineinduced bone loss in rats, Transplant International, 25(1), 127-133.
  • Nakagawa Y, Tayama S (2000). Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes, Archives Toxicology, 74(2), 99-105.
  • Ohkawa H, Ohishi N, Yagi K (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(1), 351-358.
  • Ozolins TW (2010). Cyclophosphamide and The Teratology Society: An Awkward Marriage. Birth Defects Research (Part B), 89, 289-299.
  • Sajiki J, Yanagibori R, Kobayashi R (2010). Study of experiment on leaching of bisphenol A from infant books to artificial saliva, Nihon Eiseigaku Zasshi (Japanesse Journal of Hygiene, 65(3), 467-470.
  • Sangai NP, Verma RJ, Trivedi MH (2012). Testing the efficacy of quercetin in mitigating bisphenol a toxicity in liver and kidney of mice. Toxicology and Industrial Health, 30, 581-597.
  • Shalaby MA, El Zorba HY, Ziada RM (2010). Reproductive toxicity of methomyl insecticide in male rats and protective effect of folic acid, Food and Chemical Toxicology, 48(11), 3221-3226.
  • Staples CA, Dorn Pb, Klecka GM, O’block ST, Harris LR (1998). A Rewiev of the Enviromental Fate, Effects and Exposures of Bisphenol A, Chemosphere, 36(10), 2149-2173.
  • Sun Y, Oberley LW, Li Y (1988). A simple for clinical assay of superoxide dismutase, Clinical Chemistry, 34(3), 497-500.
  • Tietze F (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502-522.
  • Tiwaria D, Kamblea J, Chilgundea S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanagea G (2012). Clastogenic and mutagenic effectes of bisphenol A: An endocrine disruptor, Mutation Research / Genetic Toxicology and Environmental Mutagenesis, 743(1-2), 83-90.
  • Yu C, Tai F, Song Z, Wu R, Zhang X, He F (2011). Pubertal exposure to bisphenol A disrupts behavior in adult C57BL/6J mice, Environmental toxicology and pharmascology, 31(1), 88-99.
  • Zhou J, Zhu X, Cai Z (2011). The impacts of bisphenol A (BFA) on abalone (Haliotis diversicolor supertexta) embriyonic development, Chemosphere, 82(3), 443-450.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Zeki Aydos Bu kişi benim

Murat Boyacıoğlu Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 2

Kaynak Göster

APA Aydos, Z., & Boyacıoğlu, M. (2019). Ratlarda Deneysel Bisfenol A Toksikasyonunda Folik Asitin Koruyucu Etkilerinin Araştırılması. Animal Health Production and Hygiene, 8(2), 642-646.