Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 90 - 102, 31.12.2024
https://doi.org/10.37094/adyujsci.1564147

Öz

Kaynakça

  • [1] Shen, T., Jiang, Z., Wang, Y., Liu, Y., Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors, Chemistry–A European Journal, 30, e202401812, 2024.
  • [2] Ozcan, E., Ozdemir, M., Ho, D., Zorlu, Y., Ozdemir, R., Kim, C. Usta, H., Cosut, B., A solution-processable meso-phenyl bodipy-based n-channel semiconductor with enhanced fluorescence emission, ChemPlusChem, 84, 1423-1431, 2019.
  • [3] Kim, T., Shin, G., Park, T., Kim, M., Molecular design leveraging non‐covalent interactions for efficient light‐emitting organic small molecules, Advanced Functional Materials, 2412267, 2024.
  • [4] Ozdemir, M., Genc, S., Ozdemir, R., Altintas, Y., Citir, M., Sen, U., Mutlugun, E., Usta, H., Trans-cis isomerization assisted synthesis of yellow fluorescent maleic anhydride derivatives for white-light generation, Synthetic Metals, 210, 192–200, 2015.
  • [5] Langa, F., de la Cruz, P., Sharma, G. D., Organic solar cells based on non‐fullerene low molecular weight organic semiconductor molecules, ChemSusChem, e202400361, 2024.
  • [6] Wang, Y., Wustoni, S., Surgailis, J., Zhong, Y., Koklu, A., Inal. S., Designing organic mixed conductors for electrochemical transistor applications, Nature Reviews Materials, 9, 249–265, 2024.
  • [7] Li, S., Duan, Y., Zhu, W., Cheng, S., Hu, W., Sensing interfaces engineering for organic thin film transistors‐based biosensors: opportunities and challenges, Advanced Materials, 2412379.
  • [8] Ji, Z. Li, Z., Liu, L., Zou, Y., Di, C., Zhu, D., Organic thermoelectric devices for energy harvesting and sensing applications, Advanced Materials Technologies, 2302128, 2024.
  • [9] Solari, W. Liu, R., Erkızan, S.N., Osypiw, A.R.C., Smowton, P.M., Hou, B., Image sensors and photodetectors based on low‐carbon footprint solution‐processed semiconductors, Advanced Sensor Research, 2400059, 2024.
  • [10] Chen, J., Zhang, W., Wang, L., Yu, G., Recent research progress of organic small‐molecule semiconductors with high electron mobilities, Advanced Materials, 35, 2210772, 2023.
  • [11] Can, A., Facchetti, A., Usta, H., Indenofluorenes for organic optoelectronics: the dance of fused five- and six-membered rings enabling structural versatility, Journal of Materials Chemistry C, 10, 8496–8535, 2022.
  • [12] Ozdemir, Park, R. S., Deneme, İ., Park, Y., Zorlu, Y., Alidagi, H. A., Harmandar, K., Kim C., Usta, H., Triisopropylsilylethynyl-substituted indenofluorenes: carbonyl: versus dicyanovinylene functionalization in one-dimensional molecular crystals and solution-processed n-channel ofets, Organic Chemistry Frontiers, 5, 2912–2924, 2018.
  • [13] Ozdemir, R. Choi, D., Ozdemir, M., Kwon, G., Kim, H., Sen, U., Kim, C., Usta, H., Ultralow bandgap molecular semiconductors for ambient-stable and solution-processable ambipolar organic field-effect transistors and inverters, Journal of Materials Chemistry C, 5, 2368–2379, 2017.
  • [14] Martinez, I., Zarate, X., Schott, E., Morales-Verdejo, C., Castillo, F., Manríquez, J. M., Chávez, I., A theoretical study of substituted indeno[1,2-b]fluorene compounds and their possible applications in solar cells, Chemical Physics Letters, 636, 31–34, 2015.
  • [15] Huang, J.-D., Zhao, J., Yu, K., Huang, X., Cheng, S.-B., Ma, H., Theoretical study of charge-transport and optical properties of indeno[1,2- b ]fluorene-6,12-dione-based semiconducting materials, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 74, 705–711, 2018.
  • [16] Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., Brédas, J.-L., Charge transport in organic semiconductors, Chemical Reviews, 107, 926–952, 2007.
  • [17] Oliveira, E. F., Lavarda, F. C., Reorganization energy for hole and electron transfer of poly(3-hexylthiophene) derivatives, Polymer, 99, 105–111, 2016.
  • [18] Lee, C., Sohlberg, K., The effect of substitution on reorganization energy and charge mobility in metal free phthalocyanine, Chemical Physics, 367, 7–19, 2010.
  • [19] Ozdemir, R., Ahn, K., Deneme, I., Zorlu, Y., Kim, D., Kim, MG., Usta, H., Engineering functionalized low LUMO [1]benzothieno[3, 2-b][1]benzothiophenes (BTBTs): unusual molecular and charge transport properties, Journal of Materials Chemistry C, 8, 15253–15267, 2020.
  • [20] Elmacı, G., Aktan, E., Seferoğlu, N., Hökelek, T., Seferoğlu, Z., Synthesis, molecular structure and computational study of (z)-2-((e)-4-nitrobenzylidene)hydrazone)-1,2-diphenylethan-1-one, Journal of Molecular Structure, 1099, 83–91, 2015.
  • [21] Elmacı, G., Duyar, H., Aydıner B., Seferoğlu, N., Naziri, MA., Şahin, E., Seferoğlu, Z., The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases, Journal of Molecular Structure, 1162, 37–44, 2018.
  • [22] Elmacı, G., Duyar, H., Aydıner B., Yahaya, I., Seferoğlu, N., Şahin, E., Çelik, S. P., Sçık. L., Seferoğlu, Z., Novel benzildihydrazone based Schiff bases: Syntheses, characterization, thermal properties, theoretical DFT calculations and biological activity studies, Journal of Molecular Structure, 1184, 271–280, 2019.
  • [23] Frisch, M.J., et. al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003.
  • [24] Brédas, J.-L., Beljonne, D., Coropceanu, V., Cornil, J., Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture, Chemical Reviews, 104, 4971–5004, 2004.

Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors

Yıl 2024, , 90 - 102, 31.12.2024
https://doi.org/10.37094/adyujsci.1564147

Öz

The reorganization energy of an organic semiconductor can be modulated through molecular design. Density functional theory (DFT) calculations enable researchers to strategically design organic molecular semiconductors with low reorganization energy through chemical substitution. Herein, hole and electron reorganization energies of unsubstituted indeno[1,2-b]fluorene-6,12-dione (IFDK), and its 5,11- and 2,8-disubstituted derivatives were computed. Substituents positioned along the molecular long axes and short axes were employed to enhance understanding of how substitution position influences the molecular reorganization energy. Additionally, substituents with varying electron-withdrawing and electron-donating properties were also investigated to reveal the structure-property relationship in IFDKs. Based on DFT calculations, triphenylamine (TPA) substitution at the 5,11 and 2,8 positions exhibited the largest decreases in hole reorganization energy compared to the parent IFDK, reducing it from 240 meV to 80 meV and 110 meV, respectively. This suggest that more effective charge transfer is expected with TPA substitution in IFDKs due to lower reorganization energy. This work reveals the significant substitution effect on reorganization energy through the specific position and electronic characters (EWG vs EDG), providing a foundation for the future design of IFDK-based molecules with high charge transfer efficiency.

Teşekkür

I would like to thank Prof. Hakan Usta for his helpful discussions.

Kaynakça

  • [1] Shen, T., Jiang, Z., Wang, Y., Liu, Y., Rational molecular design of diketopyrrolopyrrole‐based n‐type and ambipolar polymer semiconductors, Chemistry–A European Journal, 30, e202401812, 2024.
  • [2] Ozcan, E., Ozdemir, M., Ho, D., Zorlu, Y., Ozdemir, R., Kim, C. Usta, H., Cosut, B., A solution-processable meso-phenyl bodipy-based n-channel semiconductor with enhanced fluorescence emission, ChemPlusChem, 84, 1423-1431, 2019.
  • [3] Kim, T., Shin, G., Park, T., Kim, M., Molecular design leveraging non‐covalent interactions for efficient light‐emitting organic small molecules, Advanced Functional Materials, 2412267, 2024.
  • [4] Ozdemir, M., Genc, S., Ozdemir, R., Altintas, Y., Citir, M., Sen, U., Mutlugun, E., Usta, H., Trans-cis isomerization assisted synthesis of yellow fluorescent maleic anhydride derivatives for white-light generation, Synthetic Metals, 210, 192–200, 2015.
  • [5] Langa, F., de la Cruz, P., Sharma, G. D., Organic solar cells based on non‐fullerene low molecular weight organic semiconductor molecules, ChemSusChem, e202400361, 2024.
  • [6] Wang, Y., Wustoni, S., Surgailis, J., Zhong, Y., Koklu, A., Inal. S., Designing organic mixed conductors for electrochemical transistor applications, Nature Reviews Materials, 9, 249–265, 2024.
  • [7] Li, S., Duan, Y., Zhu, W., Cheng, S., Hu, W., Sensing interfaces engineering for organic thin film transistors‐based biosensors: opportunities and challenges, Advanced Materials, 2412379.
  • [8] Ji, Z. Li, Z., Liu, L., Zou, Y., Di, C., Zhu, D., Organic thermoelectric devices for energy harvesting and sensing applications, Advanced Materials Technologies, 2302128, 2024.
  • [9] Solari, W. Liu, R., Erkızan, S.N., Osypiw, A.R.C., Smowton, P.M., Hou, B., Image sensors and photodetectors based on low‐carbon footprint solution‐processed semiconductors, Advanced Sensor Research, 2400059, 2024.
  • [10] Chen, J., Zhang, W., Wang, L., Yu, G., Recent research progress of organic small‐molecule semiconductors with high electron mobilities, Advanced Materials, 35, 2210772, 2023.
  • [11] Can, A., Facchetti, A., Usta, H., Indenofluorenes for organic optoelectronics: the dance of fused five- and six-membered rings enabling structural versatility, Journal of Materials Chemistry C, 10, 8496–8535, 2022.
  • [12] Ozdemir, Park, R. S., Deneme, İ., Park, Y., Zorlu, Y., Alidagi, H. A., Harmandar, K., Kim C., Usta, H., Triisopropylsilylethynyl-substituted indenofluorenes: carbonyl: versus dicyanovinylene functionalization in one-dimensional molecular crystals and solution-processed n-channel ofets, Organic Chemistry Frontiers, 5, 2912–2924, 2018.
  • [13] Ozdemir, R. Choi, D., Ozdemir, M., Kwon, G., Kim, H., Sen, U., Kim, C., Usta, H., Ultralow bandgap molecular semiconductors for ambient-stable and solution-processable ambipolar organic field-effect transistors and inverters, Journal of Materials Chemistry C, 5, 2368–2379, 2017.
  • [14] Martinez, I., Zarate, X., Schott, E., Morales-Verdejo, C., Castillo, F., Manríquez, J. M., Chávez, I., A theoretical study of substituted indeno[1,2-b]fluorene compounds and their possible applications in solar cells, Chemical Physics Letters, 636, 31–34, 2015.
  • [15] Huang, J.-D., Zhao, J., Yu, K., Huang, X., Cheng, S.-B., Ma, H., Theoretical study of charge-transport and optical properties of indeno[1,2- b ]fluorene-6,12-dione-based semiconducting materials, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 74, 705–711, 2018.
  • [16] Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., Brédas, J.-L., Charge transport in organic semiconductors, Chemical Reviews, 107, 926–952, 2007.
  • [17] Oliveira, E. F., Lavarda, F. C., Reorganization energy for hole and electron transfer of poly(3-hexylthiophene) derivatives, Polymer, 99, 105–111, 2016.
  • [18] Lee, C., Sohlberg, K., The effect of substitution on reorganization energy and charge mobility in metal free phthalocyanine, Chemical Physics, 367, 7–19, 2010.
  • [19] Ozdemir, R., Ahn, K., Deneme, I., Zorlu, Y., Kim, D., Kim, MG., Usta, H., Engineering functionalized low LUMO [1]benzothieno[3, 2-b][1]benzothiophenes (BTBTs): unusual molecular and charge transport properties, Journal of Materials Chemistry C, 8, 15253–15267, 2020.
  • [20] Elmacı, G., Aktan, E., Seferoğlu, N., Hökelek, T., Seferoğlu, Z., Synthesis, molecular structure and computational study of (z)-2-((e)-4-nitrobenzylidene)hydrazone)-1,2-diphenylethan-1-one, Journal of Molecular Structure, 1099, 83–91, 2015.
  • [21] Elmacı, G., Duyar, H., Aydıner B., Seferoğlu, N., Naziri, MA., Şahin, E., Seferoğlu, Z., The syntheses, molecular structure analyses and DFT studies on new benzil monohydrazone based Schiff bases, Journal of Molecular Structure, 1162, 37–44, 2018.
  • [22] Elmacı, G., Duyar, H., Aydıner B., Yahaya, I., Seferoğlu, N., Şahin, E., Çelik, S. P., Sçık. L., Seferoğlu, Z., Novel benzildihydrazone based Schiff bases: Syntheses, characterization, thermal properties, theoretical DFT calculations and biological activity studies, Journal of Molecular Structure, 1184, 271–280, 2019.
  • [23] Frisch, M.J., et. al., Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2003.
  • [24] Brédas, J.-L., Beljonne, D., Coropceanu, V., Cornil, J., Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture, Chemical Reviews, 104, 4971–5004, 2004.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makromoleküler Malzemeler, Malzemelerin Teorisi ve Tasarımı
Bölüm Kimya
Yazarlar

Resul Özdemir 0000-0002-7957-110X

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 9 Ekim 2024
Kabul Tarihi 28 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özdemir, R. (2024). Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors. Adıyaman University Journal of Science, 14(2), 90-102. https://doi.org/10.37094/adyujsci.1564147
AMA Özdemir R. Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors. ADYU J SCI. Aralık 2024;14(2):90-102. doi:10.37094/adyujsci.1564147
Chicago Özdemir, Resul. “Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-Dione-Based Molecular Semiconductors”. Adıyaman University Journal of Science 14, sy. 2 (Aralık 2024): 90-102. https://doi.org/10.37094/adyujsci.1564147.
EndNote Özdemir R (01 Aralık 2024) Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors. Adıyaman University Journal of Science 14 2 90–102.
IEEE R. Özdemir, “Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors”, ADYU J SCI, c. 14, sy. 2, ss. 90–102, 2024, doi: 10.37094/adyujsci.1564147.
ISNAD Özdemir, Resul. “Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-Dione-Based Molecular Semiconductors”. Adıyaman University Journal of Science 14/2 (Aralık 2024), 90-102. https://doi.org/10.37094/adyujsci.1564147.
JAMA Özdemir R. Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors. ADYU J SCI. 2024;14:90–102.
MLA Özdemir, Resul. “Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-Dione-Based Molecular Semiconductors”. Adıyaman University Journal of Science, c. 14, sy. 2, 2024, ss. 90-102, doi:10.37094/adyujsci.1564147.
Vancouver Özdemir R. Theoretical Study of Substitution Effects on Reorganization Energy in Indeno[1,2-b]fluorene-6,12-dione-Based Molecular Semiconductors. ADYU J SCI. 2024;14(2):90-102.

...