Araştırma Makalesi
BibTex RIS Kaynak Göster

Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane

Yıl 2020, Cilt: 10 Sayı: 1, 240 - 255, 25.06.2020
https://doi.org/10.37094/adyujsci.612485

Öz

    The main purpose of this study is to investigate surface with a constant slope ruling with respect to osculating plane by using Frenet Frame according to casual characters in Minkowski space. In accordance with this purpose, surface with constant slope ruling with respect to osculating plane in Minkowski Space is defined and many features of this surface are investigated. In addition, examples of the given characterizations are obtained and the geometrical structures of these examples are be examined and visualized. 

Kaynakça

  • [1] Erdoğdu M., Yavuz A., Some Characterizations for Involute-Evolute Curve Couples with Constant Curvatures in Minkowski Space, Afyon Kocatepe University Journal of Science and Engineering,. 19, 031303, 605-614, 2019.
  • [2] Erdoğdu, M., Parallel frame of non-lightlike curves in Minkowski space-time, International Journal of Geometric Methods in Modern Physics, 12, 16 pages, 2015.
  • [3] López, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space. International Electronic Journal of Geometry, 7, 44-107, 2014.
  • [4] Kaya, F.E., Yavuz A., Harmonic curvatures of the strip in Minkowski space. Asian-European Journal of Mathematics, Vol. 11, No. 04, 1850061, 2018.
  • [5] Malecek K., Szarka J., Szarkova D., Surfaces with Constant Slope with Their Generalisation, The Journal of Polish Society for Geometry and Engineering Graphics, 19, 67-77, 2009.
  • [6] Walrave, J., Curves and Surfaces in Minkowski Space, Ph. D. thesis, K. U. Leuven, Fac. of Science Leuven, 1995.
  • [7] Önder, M., Uğurlu, H.H., Frenet Frames and Invariants of Timelike Ruled Surfaces, Ain Shams Engineering Journal, 4(3), 507-513, 2013.
  • [8] Wolfgang, K., Differential Geometry: Curves Surfaces Manifolds, ISBN-13: 978-0821839881, American Mathematical Society, 2002.
  • [9] Yaylı Y., Zıplar E., Ferret-Serret motion and ruled surfaces with constant slope, International Journal of the Physical Science, 6(29), 6727-6734, 2011.
  • [10] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice Hall, ISBN New Jersy, 1976.

Yıl 2020, Cilt: 10 Sayı: 1, 240 - 255, 25.06.2020
https://doi.org/10.37094/adyujsci.612485

Öz

Kaynakça

  • [1] Erdoğdu M., Yavuz A., Some Characterizations for Involute-Evolute Curve Couples with Constant Curvatures in Minkowski Space, Afyon Kocatepe University Journal of Science and Engineering,. 19, 031303, 605-614, 2019.
  • [2] Erdoğdu, M., Parallel frame of non-lightlike curves in Minkowski space-time, International Journal of Geometric Methods in Modern Physics, 12, 16 pages, 2015.
  • [3] López, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space. International Electronic Journal of Geometry, 7, 44-107, 2014.
  • [4] Kaya, F.E., Yavuz A., Harmonic curvatures of the strip in Minkowski space. Asian-European Journal of Mathematics, Vol. 11, No. 04, 1850061, 2018.
  • [5] Malecek K., Szarka J., Szarkova D., Surfaces with Constant Slope with Their Generalisation, The Journal of Polish Society for Geometry and Engineering Graphics, 19, 67-77, 2009.
  • [6] Walrave, J., Curves and Surfaces in Minkowski Space, Ph. D. thesis, K. U. Leuven, Fac. of Science Leuven, 1995.
  • [7] Önder, M., Uğurlu, H.H., Frenet Frames and Invariants of Timelike Ruled Surfaces, Ain Shams Engineering Journal, 4(3), 507-513, 2013.
  • [8] Wolfgang, K., Differential Geometry: Curves Surfaces Manifolds, ISBN-13: 978-0821839881, American Mathematical Society, 2002.
  • [9] Yaylı Y., Zıplar E., Ferret-Serret motion and ruled surfaces with constant slope, International Journal of the Physical Science, 6(29), 6727-6734, 2011.
  • [10] Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice Hall, ISBN New Jersy, 1976.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Yavuz 0000-0002-0469-3786

Fatma Ateş 0000-0002-3529-1077

Yusuf Yaylı 0000-0003-4398-3855

Gönderilme Tarihi 28 Ağustos 2019
Kabul Tarihi 21 Mart 2020
Yayımlanma Tarihi 25 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Yavuz, A., Ateş, F., & Yaylı, Y. (2020). Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane. Adıyaman University Journal of Science, 10(1), 240-255. https://doi.org/10.37094/adyujsci.612485
AMA 1.Yavuz A, Ateş F, Yaylı Y. Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane. ADYU J SCI. 2020;10(1):240-255. doi:10.37094/adyujsci.612485
Chicago Yavuz, Ayşe, Fatma Ateş, ve Yusuf Yaylı. 2020. “Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane”. Adıyaman University Journal of Science 10 (1): 240-55. https://doi.org/10.37094/adyujsci.612485.
EndNote Yavuz A, Ateş F, Yaylı Y (01 Haziran 2020) Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane. Adıyaman University Journal of Science 10 1 240–255.
IEEE [1]A. Yavuz, F. Ateş, ve Y. Yaylı, “Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane”, ADYU J SCI, c. 10, sy 1, ss. 240–255, Haz. 2020, doi: 10.37094/adyujsci.612485.
ISNAD Yavuz, Ayşe - Ateş, Fatma - Yaylı, Yusuf. “Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane”. Adıyaman University Journal of Science 10/1 (01 Haziran 2020): 240-255. https://doi.org/10.37094/adyujsci.612485.
JAMA 1.Yavuz A, Ateş F, Yaylı Y. Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane. ADYU J SCI. 2020;10:240–255.
MLA Yavuz, Ayşe, vd. “Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane”. Adıyaman University Journal of Science, c. 10, sy 1, Haziran 2020, ss. 240-55, doi:10.37094/adyujsci.612485.
Vancouver 1.Yavuz A, Ateş F, Yaylı Y. Non-null Surfaces with Constant Slope Ruling with Respect to Osculating Plane. ADYU J SCI [Internet]. 01 Haziran 2020;10(1):240-55. Erişim adresi: https://izlik.org/JA64BP37RX