Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 10 - 21, 25.06.2020
https://doi.org/10.37094/adyujsci.623260

Öz

Kaynakça

  • [1] Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., Wehrli, B., The challenge of micropollutants in aquatic systems, Science, 313, 1072-1077, 2006.
  • [2] Banaee, M., Sureda, A., Mirvaghefi, A., Ahmadi, K., Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss), Pesticide Biochemistry and Physiology, 99, 1-6, 2011.
  • [3] de Freitas Tallarico, L., Borrely, S.I., Hamada, N., Grazeffe, V.S., Ohlweiler, F.P., Okazaki, K., Granatelli, A.T., Pereira, I.W., de Bragança Pereira, C.A., Nakano, E., Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples, Ecotoxicology and Environmental Safety, 110, 208-215, 2014.
  • [4] Duke, S.O., Powles, S.B., Glyphosate: a once-in-a-century herbicide, Pest Management Science, 64, 319-325, 2008.
  • [5] Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S., Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch, Ecotoxicology and Environmental Safety, 56, 295-301, 2003.
  • [6] Folmar, L.C., Sanders, H., Julin, A., Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8, 269-278, 1979.
  • [7] Lanctôt, C., Navarro-Martín, L., Robertson, C., Park, B., Jackman, P., Pauli, B.D., Trudeau, V.L., Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: agriculturally relevant exposures to Roundup WeatherMax® and Vision® under laboratory conditions, Aquatic Toxicology, 154, 291-303, 2014.
  • [8] Solomon, K., Thompson, D., Ecological risk assessment for aquatic organisms from over-water uses of glyphosate, Journal of Toxicology and Environmental, Health, Part B 6, 289-324, 2003.
  • [9] Peruzzo, P.J., Porta, A.A., Ronco, A.E., Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina, Environmental Pollution, 156, 61-66, 2008.
  • [10] Achiorno, C.L., de Villalobos, C., Ferrari, L., Validation test with embryonic and larval stages of Chordodes nobilii (Gordiida, Nematomorpha): Sensitivity to three reference toxicants, Chemosphere, 81, 133-140, 2010.
  • [11] Ibrahim, D.M., Reduce, refine, replace: The failure of the three R's and the future of animal experimentation, The University of Chicago Legal Forum, 195, 2006.
  • [12] Özcan Oruç, E., Üner, N., Marker enzyme assesment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl, Journal of Biochemical and Molecular Toxicology, 16, 182-188, 2002.
  • [13] Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., Zanella, R., Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626, 737-743, 2018.
  • [14] Parvez, S., Raisuddin, S.J.E.T., Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch), Environmental Toxicology and Pharmacology, 20, 112-117, 2005.
  • [15] Wang, X., Xing, H., Jiang, Y., Wu, H., Sun, G., Xu, Q., Xu, S., Accumulation, histopathological effects and response of biochemical markers in the spleens and head kidneys of common carp exposed to atrazine and chlorpyrifos, Food and Chemical Toxicology, 62, 148-158, 2013.
  • [16] Lukaszewicz-Hussain, A., Role of oxidative stress in organophosphate insecticide toxicity–Short review, Pesticide Biochemistry and Physiology, 98, 145-150, 2010.
  • [17] Kehrer, J.P., The Haber–Weiss reaction and mechanisms of toxicity, Toxicology, 149, 43-50, 2000.
  • [18] Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction, Toxicology Letters, 82, 969-974, 1995.
  • [19] Otitoju, O., Onwurah, I.N., Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment, African Journal of Biotechnology, 6, 1455-1459, 2007.
  • [20] Cedergreen, N., Streibig, J.C., The toxicity of herbicides to non‐target aquatic plants and algae: assessment of predictive factors and hazard, Pest Management Science, 61, 1152-1160, 2005.
  • [21] Güngördü, A., Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis, Aquatic Toxicology, 140-141, 220-228, 2013.
  • [22] Relyea, R.A., The lethal impact of Roundup on aquatic and terrestrial amphibians, Ecological Applications, 15, 1118-1124, 2005.
  • [23] APHA, Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, 2005.
  • [24] Guyton, K.Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., Straif, K., Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate, Lancet Oncology, 16, 490, 2015.
  • [25] Habig, W., Pabst, M., Jakoby, W., The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase, The Journal of Biological Chemistry, 249, 7130-7139, 1974.
  • [26] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248-254. 1976.
  • [27] Finney, D.J., Probit analysis. Cambridge University Press, New York. 1952.
  • [28] Barlas, N., Determination of organochlorine pesticide residues in aquatic systems and organisms in upper Sakarya Basin, Türkiye, Bulletin of Environmental Contamination and Toxicology, 62, 278-285, 1999.
  • [29] Castillo, L.E., Ruepert, C., Solis, E., Pesticide residues in the aquatic environment of banana plantation areas in the north Atlantic zone of Costa Rica, Environmental Toxicology and Chemistry, 19, 1942-1950, 2000.
  • [30] Qian, Y., Matsumoto, H., Liu, X., Li, S., Liang, X., Liu, Y., Zhu, G., Wang, M., Dissipation, occurrence and risk assessment of a phenylurea herbicide tebuthiuron in sugarcane and aquatic ecosystems in South China, Environmental Pollution, 227, 389-396, 2017.
  • [31] Vryzas, Z., Alexoudis, C., Vassiliou, G., Galanis, K., Papadopoulou-Mourkidou, E., Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece, Ecotoxicology and Environmental Safety, 74, 174-181, 2011.
  • [32] Giesy, J.P., Dobson, S., Solomon, K.R., Ecotoxicological risk assessment for Roundup® herbicide, Reviews of environmental contamination and toxicology, Springer, pp. 35-120, 2000.
  • [33] Caldas, S.S., Bolzan, C.M., Guilherme, J.R., Silveira, M.A.K., Escarrone, A.L.V., Primel, E.G., Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey, Environmental Science and Pollution Research 20, 5855-5863, 2013.
  • [34] Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B., Srivastava, S.K., Toxicity of the Herbicide Atrazine: Effects on Lipid Peroxidation and Activities of Antioxidant Enzymes in the Freshwater Fish Channa Punctatus (Bloch), International Journal of Environmental Research and Public Health, 7, 3298-3312, 2010.
  • [35] Xu, Y., Li, A.J., Li, K., Qin, J., Li, H., Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata), Aquatic Toxicology, 193, 136-143, 2017.
  • [36] Chaufan, G., Coalova, I., Molina, M.d.C.R.d., Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: differences with its active ingredient, International Journal of Toxicology, 33, 29-38, 2014.
  • [37] Cuhra, M., Traavik, T., Bøhn, T., Clone-and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna, Ecotoxicology, 22, 251-262, 2013.
  • [38] Pereira, J.L., Antunes, S.C., Castro, B.B., Marques, C.R., Gonçalves, A.M., Gonçalves, F., Pereira, R., Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient, Ecotoxicology, 18, 455-463, 2009.
  • [39] Malato, S., Blanco, J., Fernandez-Alba, A., Agüera, A., Solar photocatalytic mineralization of commercial pesticides: acrinathrin, Chemosphere, 40, 403-409, 2000.
  • [40] Oehlmann, J., Schulte-Oehlmann, U., Molluscs as bioindicators, Trace Metals and other Contaminants in the Environment, Elsevier, pp. 577-635, 2003.
  • [41] Barky, F.A., Abdelsalam, H.A., Mahmoud, M.B., Hamdi, S.A., Influence of Atrazine and Roundup pesticides on biochemical and molecular aspects of Biomphalaria alexandrina snails, Pesticide Biochemistry and Physiology, 104, 9-18, 2012.
  • [42] Abdel-Ghaffar, F., Ahmed, A. K. Bakry, F. Rabei I. and Ibrahim A.J.M., The impact of three herbicides on biological and histological aspects of Biomphalaria alexandrina, intermediate host of Schistosoma mansoni, Malacologia, 59, 197-210, 2016.
  • [43] Omran, N.E., Salama, W.M.J.T., The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails, Toxicology and Industrial Health, 32, 656-665, 2016.
  • [44] Cossu, C., Doyotte, A., Jacquin, M., Babut, M., Exinger, A., Vasseur, P., Glutathione reductase, selenium-dependent glutathione peroxidase, glutathione levels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkers of aquatic contamination in field studies, Ecotoxicology and Environmental Safety, 38, 122-131, 1997.
  • [45] Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., Biochemical responses in aquatic animals: a review of determinants of oxidative stress, Environmental Toxicology and Chemistry, 8, 1103-1123, 1989.
  • [46] Regoli, F., Giuliani, M.E., Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms, Marine Environmental Research, 93, 106-117, 2014.
  • [47] Khatun, S., Ali, M.B., Hahn, E.-J., Paek, K.-Y., Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants, Environmental and Experimental Botany, 64, 279-285, 2008.
  • [48] Oruc, E.O., Sevgiler, Y., Uner, N., Tissue-specific oxidative stress responses in fish exposed to 2, 4-D and azinphosmethyl, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 137, 43-51, 2004.
  • [49] Zhang, J., Shen, H., Wang, X., Wu, J., Xue, Y., Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus, Chemosphere, 55, 167-174, 2004.
  • [50] Di Giulio, R., Meyer, J., Reactive oxygen species and oxidative stress, in: Di Giulio, R., Meyer, J. (eds.), The toxicology of fishes. CRC Press, Boca Raton, pp. 273-324, 2008.
  • [51] Slaninova, A., Smutna, M., Modra, H., Svobodova, Z., Reviews Oxidative stress in fish induced by pesticides, Neuroendocrinology Letters, 30, 2, 2009.
  • [52] Bakry, F.A., Ismail, S.M., Abd El-Atti, M.S., Glyphosate herbicide induces genotoxic effect and physiological disturbances in Bulinus truncatus snails, Pesticide Biochemistry and Physiology, 123, 24-30. 2015.
  • [53] Mukanganyama, S., Figueroa, C., Hasler, J., Niemeyer, H., Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae), Journal of Insect Physiology, 49, 223-229, 2003.
  • [54] Egaas, E., Sandvik, M., Fjeld, E., Källqvist, T., Goksøyr, A., Svensen, A., Some effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta), Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 122, 337-344, 1999.
  • [55] Wang, C., Lu, G., Cui, J., Wang, P., Sublethal effects of pesticide mixtures on selected biomarkers of Carassius auratus, Environmental Toxicology and Pharmacology, 28, 414-419, 2009.
  • [56] Moreira, S., Moreira-Santos, M., Rendón-von Osten, J., Da Silva, E., Ribeiro, R., Guilhermino, L., Soares, A., Ecotoxicological tools for the tropics: Sublethal assays with fish to evaluate edge-of-field pesticide runoff toxicity, Ecotoxicology and Environmental Safety, 73, 893-899, 2010.
  • [57] Khalil, A.M., Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos, Ecotoxicology and Environmental Safety, 116, 137-142, 2015.
  • [58] Lushchak, V., Kubrak, O.I., Storey, J.M., Storey, K.B., Lushchak, V.I., Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues, Chemosphere, 76, 932-937, 2009.
  • [59] Samanta, P., Pal, S., Mukherjee, A.K., Ghosh, A.R., Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes, Ecotoxicology and Environmental Safety, 107, 120-125, 2014.

Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa

Yıl 2020, , 10 - 21, 25.06.2020
https://doi.org/10.37094/adyujsci.623260

Öz

    In the present study, we determined the 24, 48, 72, and 96 h LC50 values for a glyphosate- based commercial herbicide (GBH) for the aquatic snail Melanopsis praemorsa. We examined subacute toxicity responses from M. praemorsa after 30-day exposure to 1/10, 1/5, and 1/2 of the 96 h LC50 value using several biochemical markers. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly inhibited when compared to control after 4 days of GBH exposure. On the twentieth day of exposure, GST and GR activities were inhibited in organisms exposed to both LC50/10 and LC50/5 compared to control. These results showed that chronic GBH exposure inhibited GST, an important detoxifying enzyme. GR, an important oxidative stress marker, was likely inhibited as a result of inhibition of the detoxification mechanism.

Kaynakça

  • [1] Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Von Gunten, U., Wehrli, B., The challenge of micropollutants in aquatic systems, Science, 313, 1072-1077, 2006.
  • [2] Banaee, M., Sureda, A., Mirvaghefi, A., Ahmadi, K., Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss), Pesticide Biochemistry and Physiology, 99, 1-6, 2011.
  • [3] de Freitas Tallarico, L., Borrely, S.I., Hamada, N., Grazeffe, V.S., Ohlweiler, F.P., Okazaki, K., Granatelli, A.T., Pereira, I.W., de Bragança Pereira, C.A., Nakano, E., Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples, Ecotoxicology and Environmental Safety, 110, 208-215, 2014.
  • [4] Duke, S.O., Powles, S.B., Glyphosate: a once-in-a-century herbicide, Pest Management Science, 64, 319-325, 2008.
  • [5] Sayeed, I., Parvez, S., Pandey, S., Bin-Hafeez, B., Haque, R., Raisuddin, S., Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch, Ecotoxicology and Environmental Safety, 56, 295-301, 2003.
  • [6] Folmar, L.C., Sanders, H., Julin, A., Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 8, 269-278, 1979.
  • [7] Lanctôt, C., Navarro-Martín, L., Robertson, C., Park, B., Jackman, P., Pauli, B.D., Trudeau, V.L., Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: agriculturally relevant exposures to Roundup WeatherMax® and Vision® under laboratory conditions, Aquatic Toxicology, 154, 291-303, 2014.
  • [8] Solomon, K., Thompson, D., Ecological risk assessment for aquatic organisms from over-water uses of glyphosate, Journal of Toxicology and Environmental, Health, Part B 6, 289-324, 2003.
  • [9] Peruzzo, P.J., Porta, A.A., Ronco, A.E., Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina, Environmental Pollution, 156, 61-66, 2008.
  • [10] Achiorno, C.L., de Villalobos, C., Ferrari, L., Validation test with embryonic and larval stages of Chordodes nobilii (Gordiida, Nematomorpha): Sensitivity to three reference toxicants, Chemosphere, 81, 133-140, 2010.
  • [11] Ibrahim, D.M., Reduce, refine, replace: The failure of the three R's and the future of animal experimentation, The University of Chicago Legal Forum, 195, 2006.
  • [12] Özcan Oruç, E., Üner, N., Marker enzyme assesment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl, Journal of Biochemical and Molecular Toxicology, 16, 182-188, 2002.
  • [13] Clasen, B., Loro, V. L., Murussi, C. R., Tiecher, T. L., Moraes, B., Zanella, R., Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Science of the Total Environment, 626, 737-743, 2018.
  • [14] Parvez, S., Raisuddin, S.J.E.T., Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch), Environmental Toxicology and Pharmacology, 20, 112-117, 2005.
  • [15] Wang, X., Xing, H., Jiang, Y., Wu, H., Sun, G., Xu, Q., Xu, S., Accumulation, histopathological effects and response of biochemical markers in the spleens and head kidneys of common carp exposed to atrazine and chlorpyrifos, Food and Chemical Toxicology, 62, 148-158, 2013.
  • [16] Lukaszewicz-Hussain, A., Role of oxidative stress in organophosphate insecticide toxicity–Short review, Pesticide Biochemistry and Physiology, 98, 145-150, 2010.
  • [17] Kehrer, J.P., The Haber–Weiss reaction and mechanisms of toxicity, Toxicology, 149, 43-50, 2000.
  • [18] Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction, Toxicology Letters, 82, 969-974, 1995.
  • [19] Otitoju, O., Onwurah, I.N., Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment, African Journal of Biotechnology, 6, 1455-1459, 2007.
  • [20] Cedergreen, N., Streibig, J.C., The toxicity of herbicides to non‐target aquatic plants and algae: assessment of predictive factors and hazard, Pest Management Science, 61, 1152-1160, 2005.
  • [21] Güngördü, A., Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis, Aquatic Toxicology, 140-141, 220-228, 2013.
  • [22] Relyea, R.A., The lethal impact of Roundup on aquatic and terrestrial amphibians, Ecological Applications, 15, 1118-1124, 2005.
  • [23] APHA, Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, 2005.
  • [24] Guyton, K.Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., Straif, K., Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate, Lancet Oncology, 16, 490, 2015.
  • [25] Habig, W., Pabst, M., Jakoby, W., The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase, The Journal of Biological Chemistry, 249, 7130-7139, 1974.
  • [26] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248-254. 1976.
  • [27] Finney, D.J., Probit analysis. Cambridge University Press, New York. 1952.
  • [28] Barlas, N., Determination of organochlorine pesticide residues in aquatic systems and organisms in upper Sakarya Basin, Türkiye, Bulletin of Environmental Contamination and Toxicology, 62, 278-285, 1999.
  • [29] Castillo, L.E., Ruepert, C., Solis, E., Pesticide residues in the aquatic environment of banana plantation areas in the north Atlantic zone of Costa Rica, Environmental Toxicology and Chemistry, 19, 1942-1950, 2000.
  • [30] Qian, Y., Matsumoto, H., Liu, X., Li, S., Liang, X., Liu, Y., Zhu, G., Wang, M., Dissipation, occurrence and risk assessment of a phenylurea herbicide tebuthiuron in sugarcane and aquatic ecosystems in South China, Environmental Pollution, 227, 389-396, 2017.
  • [31] Vryzas, Z., Alexoudis, C., Vassiliou, G., Galanis, K., Papadopoulou-Mourkidou, E., Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece, Ecotoxicology and Environmental Safety, 74, 174-181, 2011.
  • [32] Giesy, J.P., Dobson, S., Solomon, K.R., Ecotoxicological risk assessment for Roundup® herbicide, Reviews of environmental contamination and toxicology, Springer, pp. 35-120, 2000.
  • [33] Caldas, S.S., Bolzan, C.M., Guilherme, J.R., Silveira, M.A.K., Escarrone, A.L.V., Primel, E.G., Determination of pharmaceuticals, personal care products, and pesticides in surface and treated waters: method development and survey, Environmental Science and Pollution Research 20, 5855-5863, 2013.
  • [34] Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B., Srivastava, S.K., Toxicity of the Herbicide Atrazine: Effects on Lipid Peroxidation and Activities of Antioxidant Enzymes in the Freshwater Fish Channa Punctatus (Bloch), International Journal of Environmental Research and Public Health, 7, 3298-3312, 2010.
  • [35] Xu, Y., Li, A.J., Li, K., Qin, J., Li, H., Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata), Aquatic Toxicology, 193, 136-143, 2017.
  • [36] Chaufan, G., Coalova, I., Molina, M.d.C.R.d., Glyphosate commercial formulation causes cytotoxicity, oxidative effects, and apoptosis on human cells: differences with its active ingredient, International Journal of Toxicology, 33, 29-38, 2014.
  • [37] Cuhra, M., Traavik, T., Bøhn, T., Clone-and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna, Ecotoxicology, 22, 251-262, 2013.
  • [38] Pereira, J.L., Antunes, S.C., Castro, B.B., Marques, C.R., Gonçalves, A.M., Gonçalves, F., Pereira, R., Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient, Ecotoxicology, 18, 455-463, 2009.
  • [39] Malato, S., Blanco, J., Fernandez-Alba, A., Agüera, A., Solar photocatalytic mineralization of commercial pesticides: acrinathrin, Chemosphere, 40, 403-409, 2000.
  • [40] Oehlmann, J., Schulte-Oehlmann, U., Molluscs as bioindicators, Trace Metals and other Contaminants in the Environment, Elsevier, pp. 577-635, 2003.
  • [41] Barky, F.A., Abdelsalam, H.A., Mahmoud, M.B., Hamdi, S.A., Influence of Atrazine and Roundup pesticides on biochemical and molecular aspects of Biomphalaria alexandrina snails, Pesticide Biochemistry and Physiology, 104, 9-18, 2012.
  • [42] Abdel-Ghaffar, F., Ahmed, A. K. Bakry, F. Rabei I. and Ibrahim A.J.M., The impact of three herbicides on biological and histological aspects of Biomphalaria alexandrina, intermediate host of Schistosoma mansoni, Malacologia, 59, 197-210, 2016.
  • [43] Omran, N.E., Salama, W.M.J.T., The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails, Toxicology and Industrial Health, 32, 656-665, 2016.
  • [44] Cossu, C., Doyotte, A., Jacquin, M., Babut, M., Exinger, A., Vasseur, P., Glutathione reductase, selenium-dependent glutathione peroxidase, glutathione levels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkers of aquatic contamination in field studies, Ecotoxicology and Environmental Safety, 38, 122-131, 1997.
  • [45] Di Giulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W., Jewell, C.S., Biochemical responses in aquatic animals: a review of determinants of oxidative stress, Environmental Toxicology and Chemistry, 8, 1103-1123, 1989.
  • [46] Regoli, F., Giuliani, M.E., Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms, Marine Environmental Research, 93, 106-117, 2014.
  • [47] Khatun, S., Ali, M.B., Hahn, E.-J., Paek, K.-Y., Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants, Environmental and Experimental Botany, 64, 279-285, 2008.
  • [48] Oruc, E.O., Sevgiler, Y., Uner, N., Tissue-specific oxidative stress responses in fish exposed to 2, 4-D and azinphosmethyl, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 137, 43-51, 2004.
  • [49] Zhang, J., Shen, H., Wang, X., Wu, J., Xue, Y., Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus, Chemosphere, 55, 167-174, 2004.
  • [50] Di Giulio, R., Meyer, J., Reactive oxygen species and oxidative stress, in: Di Giulio, R., Meyer, J. (eds.), The toxicology of fishes. CRC Press, Boca Raton, pp. 273-324, 2008.
  • [51] Slaninova, A., Smutna, M., Modra, H., Svobodova, Z., Reviews Oxidative stress in fish induced by pesticides, Neuroendocrinology Letters, 30, 2, 2009.
  • [52] Bakry, F.A., Ismail, S.M., Abd El-Atti, M.S., Glyphosate herbicide induces genotoxic effect and physiological disturbances in Bulinus truncatus snails, Pesticide Biochemistry and Physiology, 123, 24-30. 2015.
  • [53] Mukanganyama, S., Figueroa, C., Hasler, J., Niemeyer, H., Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae), Journal of Insect Physiology, 49, 223-229, 2003.
  • [54] Egaas, E., Sandvik, M., Fjeld, E., Källqvist, T., Goksøyr, A., Svensen, A., Some effects of the fungicide propiconazole on cytochrome P450 and glutathione S-transferase in brown trout (Salmo trutta), Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 122, 337-344, 1999.
  • [55] Wang, C., Lu, G., Cui, J., Wang, P., Sublethal effects of pesticide mixtures on selected biomarkers of Carassius auratus, Environmental Toxicology and Pharmacology, 28, 414-419, 2009.
  • [56] Moreira, S., Moreira-Santos, M., Rendón-von Osten, J., Da Silva, E., Ribeiro, R., Guilhermino, L., Soares, A., Ecotoxicological tools for the tropics: Sublethal assays with fish to evaluate edge-of-field pesticide runoff toxicity, Ecotoxicology and Environmental Safety, 73, 893-899, 2010.
  • [57] Khalil, A.M., Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos, Ecotoxicology and Environmental Safety, 116, 137-142, 2015.
  • [58] Lushchak, V., Kubrak, O.I., Storey, J.M., Storey, K.B., Lushchak, V.I., Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues, Chemosphere, 76, 932-937, 2009.
  • [59] Samanta, P., Pal, S., Mukherjee, A.K., Ghosh, A.R., Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes, Ecotoxicology and Environmental Safety, 107, 120-125, 2014.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Biyoloji
Yazarlar

Özlem Demirci 0000-0001-9511-2010

Feysel Çakmak Bu kişi benim 0000-0002-4827-150X

Ahmet İsmail Özkan 0000-0002-4511-2386

Yayımlanma Tarihi 25 Haziran 2020
Gönderilme Tarihi 24 Eylül 2019
Kabul Tarihi 2 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Demirci, Ö., Çakmak, F., & Özkan, A. İ. (2020). Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. Adıyaman University Journal of Science, 10(1), 10-21. https://doi.org/10.37094/adyujsci.623260
AMA Demirci Ö, Çakmak F, Özkan Aİ. Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. ADYU J SCI. Haziran 2020;10(1):10-21. doi:10.37094/adyujsci.623260
Chicago Demirci, Özlem, Feysel Çakmak, ve Ahmet İsmail Özkan. “Toxic Effects of Glyphosate-Based Herbicide on Melanopsis Praemorsa”. Adıyaman University Journal of Science 10, sy. 1 (Haziran 2020): 10-21. https://doi.org/10.37094/adyujsci.623260.
EndNote Demirci Ö, Çakmak F, Özkan Aİ (01 Haziran 2020) Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. Adıyaman University Journal of Science 10 1 10–21.
IEEE Ö. Demirci, F. Çakmak, ve A. İ. Özkan, “Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa”, ADYU J SCI, c. 10, sy. 1, ss. 10–21, 2020, doi: 10.37094/adyujsci.623260.
ISNAD Demirci, Özlem vd. “Toxic Effects of Glyphosate-Based Herbicide on Melanopsis Praemorsa”. Adıyaman University Journal of Science 10/1 (Haziran 2020), 10-21. https://doi.org/10.37094/adyujsci.623260.
JAMA Demirci Ö, Çakmak F, Özkan Aİ. Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. ADYU J SCI. 2020;10:10–21.
MLA Demirci, Özlem vd. “Toxic Effects of Glyphosate-Based Herbicide on Melanopsis Praemorsa”. Adıyaman University Journal of Science, c. 10, sy. 1, 2020, ss. 10-21, doi:10.37094/adyujsci.623260.
Vancouver Demirci Ö, Çakmak F, Özkan Aİ. Toxic Effects of Glyphosate-Based Herbicide on Melanopsis praemorsa. ADYU J SCI. 2020;10(1):10-21.

...