Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton

Yıl 2020, , 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Öz

    In this paper, we study the Riemannian submersions $\pi:M\rightarrow B$ whose total manifolds admit an almost Yamabe soliton. Here, we give some necessary conditions for which any fiber of $\pi$ or $B$ are almost Yamabe soliton or Yamabe soliton. Also, we calculate the scalar curvatures of any fiber or $B$ and using them, we present the relations between the scalar curvatures of them and obtain some characterizations of such a soliton (that is, shrinking, steady or expanding).

Destekleyen Kurum

TÜBİTAK

Proje Numarası

117F434

Teşekkür

This work is supported by 1001-Scientific and Technological Research Projects Funding Program of TUBITAK project number 117F434.

Kaynakça

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
Yıl 2020, , 295 - 306, 25.06.2020
https://doi.org/10.37094/adyujsci.705319

Öz

Proje Numarası

117F434

Kaynakça

  • [1] Hamilton, R., “The Ricci flow on surfaces”, in Mathematics and General Relativity, Contemporary Mathematics, (71), 237-361, 1988.
  • [2] Barbosa, E., Ribeiro, E., On conformal solutions of the Yamabe flow, Archiv der Mathematik, (101), 79-89, 2013.
  • [3] Cao, H.D., Sun, X., Zhang, Y., On the structure of gradient Yamabe solitons, Mathematical Research Letters, (19), 767-774, 2012.
  • [4] Chen, B.-Y., Deshmukh, S., Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterranean Journal of Mathematics, (15), 194, 2018.
  • [5] Deshmukh, S., Chen, B.-Y., A Note on Yamabe solitons, Balkan Journal of Geometry and Its Applications, 23(1), 37-43, 2018.
  • [6] Ma, L., Miquel, V., Remarks on scalar curvature of Yamabe solitons, Annals of Global Analysis and Geometry, 42, 195-205, 2012.
  • [7] Neto, B.L., A note on (anti-)self dual quasi Yamabe gradient solitons, Results in Mathematics, 71, 527-533, 2017.
  • [8] Seko, T., Matea, S., Classification of almost Yamabe solitons in Euclidean spaces, Journal of Geometry and Physics, 136, 97-103, 2019.
  • [9] Falcitelli, M., Ianus, S., Pastore, A.M., Riemannian submersions and related topics, World Scientific Publishing Co. Pte. Ltd. 2004.
  • [10] Gray, A., Pseudo-Riemannian almost product manifolds and submersion, Journal of Mathematics and Mechanics, (16), 715–737, 1967.
  • [11] O'Neill, B., The fundamental equations of a Riemannian submersions, Michigan Mathematical Journal, 13, 459-469, 1966.
  • [12] Akyol, M.A., Gündüzalp, Y., Hemi-slant submersions from almost product Riemannian manifolds, Gulf Journal of Mathematics, 4(3), 15-27, 2016.
  • [13] Akyol, M.A., Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Communications Faculty of Sciences University of Ankara Series A1-Mathematics and Statistics, 67(1), 80-92, 2018.
  • [14] Eken Meriç, Ş., Kılıç, E., Riemannian submersions whose total manifolds admitting a Ricci soliton, International Journal of Geometric Methods in Modern Physics, 16(12), 1950196 (12 pages), 2019.
  • [15] Özdemir, F., Sayar, C., Taştan, H.M., Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaestiones Mathematicae, 40(7), 909-926, 2017.
  • [16] Besse, A.L., Einstein manifolds, Springer-Verlag, Berlin, Heildelberg, New York, 1987.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematiksel Fizik
Bölüm Matematik
Yazarlar

Şemsi Eken Meriç 0000-0003-2783-1149

Proje Numarası 117F434
Yayımlanma Tarihi 25 Haziran 2020
Gönderilme Tarihi 17 Mart 2020
Kabul Tarihi 21 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Meriç, Ş. E. (2020). Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science, 10(1), 295-306. https://doi.org/10.37094/adyujsci.705319
AMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. Haziran 2020;10(1):295-306. doi:10.37094/adyujsci.705319
Chicago Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10, sy. 1 (Haziran 2020): 295-306. https://doi.org/10.37094/adyujsci.705319.
EndNote Meriç ŞE (01 Haziran 2020) Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. Adıyaman University Journal of Science 10 1 295–306.
IEEE Ş. E. Meriç, “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”, ADYU J SCI, c. 10, sy. 1, ss. 295–306, 2020, doi: 10.37094/adyujsci.705319.
ISNAD Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science 10/1 (Haziran 2020), 295-306. https://doi.org/10.37094/adyujsci.705319.
JAMA Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10:295–306.
MLA Meriç, Şemsi Eken. “Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton”. Adıyaman University Journal of Science, c. 10, sy. 1, 2020, ss. 295-06, doi:10.37094/adyujsci.705319.
Vancouver Meriç ŞE. Some Remarks on Riemannian Submersions Admitting An Almost Yamabe Soliton. ADYU J SCI. 2020;10(1):295-306.

...