Araştırma Makalesi
BibTex RIS Kaynak Göster

Homotopy of Lie-Rinehart Crossed Module Morphisms

Yıl 2019, Cilt: 9 Sayı: 1, 202 - 212, 28.06.2019

Öz

In this paper our aim is to give the concept homotopy of morphisms of Lie-Rinehart crossed modules. We show that the homotopy relation gives rise to an equivalence relation. Additionally a groupoid structure of Lie- Rinehart crossed module morphisms and their homotopies.

Kaynakça

  • [1] Akça, İ.İ., Sidal, Y., Homotopies of Lie crossed module morphisms, arXiv: 1609.09297v1[math.CT], 2016.[2] Brown, R., and Higgings, P. J., Tensor Products and Homotopies for w− groupoids andcrossed complexes, Journal of Pure and Applied Algebra 47, 1-33, 1987.[3] Cabello, J.G. and Garzon, A.R., Closed model structures foralgebraic models for n−types, Journal of Pure and Applied Algebra 103 (3), 287-302, 1995.[4] Casas, J.M., Ladra, M., Pirashvili, T., Crossed modules for Lie-Rinehart algebras,Journal of Algebra, 274, 192-201, 2004.[5] Casas, J.M., Ladra, M., Pirashvili, T., Triple cohomology of Lie-Rinehart algebras andthe canonical class of associative algebras, Journal of Algebra, 291, 144-163, 2005.[6] Herz, J., Pseudo-algbres de Lie, C. R. Acad. Sci. Paris, 236, 1935-1937, 1953.[7] Huebschmann, J., Poisson cohomology and quantization , J. Reine Angew Math.408,57-113, 1990.[8] Mackenzie, K., Lie Groupoids and Lie algebroids in differential geometry, London math.soc. lecture note ser., vol. 124, Cambridge Univ. Press, 1987.[9] Whitehead, J.H.C., Note on a previous paper entitled On adding relations to homotopygroups, Ann. of Math. (2) , 47, 806-810, 1946.[10] Whitehead, J.H.C., Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 55,231-245 and 453-456, 1949.[11] Whitehead, J.H.C., On adding relations to homotopy groups, Ann. of Math. (2), 42, 409-428, 1941.

Lie-Rinehart Çapraz Modül Morfizimlerinin Homotopisi

Yıl 2019, Cilt: 9 Sayı: 1, 202 - 212, 28.06.2019

Öz

Bu makalede amacımız Lie-Rinehart çapraz modüllerin morfizmlerinin homotopi kavramını vermektir. Homotopi bağıntısı bir denklik bağıntısı oluşturduğunu, buna ek olarak Lie- Rinehart çapraz modül morfizmleri ve homotopileri bir groupoid yapısı olduğunu gösterdik.

Kaynakça

  • [1] Akça, İ.İ., Sidal, Y., Homotopies of Lie crossed module morphisms, arXiv: 1609.09297v1[math.CT], 2016.[2] Brown, R., and Higgings, P. J., Tensor Products and Homotopies for w− groupoids andcrossed complexes, Journal of Pure and Applied Algebra 47, 1-33, 1987.[3] Cabello, J.G. and Garzon, A.R., Closed model structures foralgebraic models for n−types, Journal of Pure and Applied Algebra 103 (3), 287-302, 1995.[4] Casas, J.M., Ladra, M., Pirashvili, T., Crossed modules for Lie-Rinehart algebras,Journal of Algebra, 274, 192-201, 2004.[5] Casas, J.M., Ladra, M., Pirashvili, T., Triple cohomology of Lie-Rinehart algebras andthe canonical class of associative algebras, Journal of Algebra, 291, 144-163, 2005.[6] Herz, J., Pseudo-algbres de Lie, C. R. Acad. Sci. Paris, 236, 1935-1937, 1953.[7] Huebschmann, J., Poisson cohomology and quantization , J. Reine Angew Math.408,57-113, 1990.[8] Mackenzie, K., Lie Groupoids and Lie algebroids in differential geometry, London math.soc. lecture note ser., vol. 124, Cambridge Univ. Press, 1987.[9] Whitehead, J.H.C., Note on a previous paper entitled On adding relations to homotopygroups, Ann. of Math. (2) , 47, 806-810, 1946.[10] Whitehead, J.H.C., Combinatorial Homotopy I and II, Bull. Amer. Math. Soc., 55,231-245 and 453-456, 1949.[11] Whitehead, J.H.C., On adding relations to homotopy groups, Ann. of Math. (2), 42, 409-428, 1941.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Matematik
Yazarlar

Ayşe Çobankaya

Selim Çetin

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 27 Ağustos 2018
Kabul Tarihi 27 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster

APA Çobankaya, A., & Çetin, S. (2019). Homotopy of Lie-Rinehart Crossed Module Morphisms. Adıyaman University Journal of Science, 9(1), 202-212.
AMA Çobankaya A, Çetin S. Homotopy of Lie-Rinehart Crossed Module Morphisms. ADYU J SCI. Haziran 2019;9(1):202-212.
Chicago Çobankaya, Ayşe, ve Selim Çetin. “Homotopy of Lie-Rinehart Crossed Module Morphisms”. Adıyaman University Journal of Science 9, sy. 1 (Haziran 2019): 202-12.
EndNote Çobankaya A, Çetin S (01 Haziran 2019) Homotopy of Lie-Rinehart Crossed Module Morphisms. Adıyaman University Journal of Science 9 1 202–212.
IEEE A. Çobankaya ve S. Çetin, “Homotopy of Lie-Rinehart Crossed Module Morphisms”, ADYU J SCI, c. 9, sy. 1, ss. 202–212, 2019.
ISNAD Çobankaya, Ayşe - Çetin, Selim. “Homotopy of Lie-Rinehart Crossed Module Morphisms”. Adıyaman University Journal of Science 9/1 (Haziran 2019), 202-212.
JAMA Çobankaya A, Çetin S. Homotopy of Lie-Rinehart Crossed Module Morphisms. ADYU J SCI. 2019;9:202–212.
MLA Çobankaya, Ayşe ve Selim Çetin. “Homotopy of Lie-Rinehart Crossed Module Morphisms”. Adıyaman University Journal of Science, c. 9, sy. 1, 2019, ss. 202-1.
Vancouver Çobankaya A, Çetin S. Homotopy of Lie-Rinehart Crossed Module Morphisms. ADYU J SCI. 2019;9(1):202-1.

...